搜索
    上传资料 赚现金
    英语朗读宝

    2022届甘肃省民乐县市级名校中考数学五模试卷含解析

    2022届甘肃省民乐县市级名校中考数学五模试卷含解析第1页
    2022届甘肃省民乐县市级名校中考数学五模试卷含解析第2页
    2022届甘肃省民乐县市级名校中考数学五模试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届甘肃省民乐县市级名校中考数学五模试卷含解析

    展开

    这是一份2022届甘肃省民乐县市级名校中考数学五模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    2.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。

    A.70° B.65° C.50° D.25°
    3.不等式组的解集是 (  )
    A.x>-1 B.x>3
    C.-1<x<3 D.x<3
    4.下列运算中正确的是( )
    A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
    5.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(  )
    A.1种 B.2种 C.3种 D.4种
    6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    7.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )

    A.1 B. C. D.
    8.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )

    A. B.
    C. D.
    9.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是(  )
    A.a=﹣2 B.a= C.a=1 D.a=
    10.估计﹣÷2的运算结果在哪两个整数之间(  )
    A.0和1 B.1和2 C.2和3 D.3和4
    二、填空题(共7小题,每小题3分,满分21分)
    11.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
    12.方程的两个根为、,则的值等于______.
    13.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:
    ①PA=PB;
    ②当OA=OB时四边形OAPB是正方形;
    ③四边形OAPB的面积和周长都是定值;
    ④连接OP,AB,则AB>OP.
    其中正确的结论是_____.(把你认为正确结论的序号都填上)

    14.如图, AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.

    15.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.

    16.分式方程=1的解为_____
    17.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+DC的最小值是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
    19.(5分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
    (1)实践操作:尺规作图,不写作法,保留作图痕迹.
    ①作∠ABC的角平分线交AC于点D.
    ②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
    (2)推理计算:四边形BFDE的面积为   .

    20.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.

    (1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
    (2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
    21.(10分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H
    (1)观察猜想
    如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是   ;∠AHB=   .
    (2)探究证明
    如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.
    (3)拓展延伸
    在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.

    22.(10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

    (1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
    (2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
    (3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
    23.(12分)计算:﹣|﹣2|+()﹣1﹣2cos45°
    24.(14分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.

    (1)求证:DB平分∠ADC;
    (2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    2、C
    【解析】
    首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
    【详解】
    解:∵AD∥BC,
    ∴∠EFB=∠FED=65°,
    由折叠的性质知,∠DEF=∠FED′=65°,
    ∴∠AED′=180°-2∠FED=50°,
    故选:C.
    【点睛】
    此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    3、B
    【解析】
    根据解不等式组的方法可以求得原不等式组的解集.
    【详解】

    解不等式①,得x>-1,
    解不等式②,得x>1,
    由①②可得,x>1,
    故原不等式组的解集是x>1.
    故选B.
    【点睛】
    本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
    4、A
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
    【详解】
    解:A、x2÷x8=x-6,故该选项正确;
    B、a•a2=a3,故该选项错误;
    C、(a2)3=a6,故该选项错误;
    D、(3a)3=27a3,故该选项错误;
    故选A.
    【点睛】
    此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
    5、B
    【解析】
    首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
    【详解】
    解:设毽子能买x个,跳绳能买y根,根据题意可得:
    3x+5y=35,
    y=7-x,
    ∵x、y都是正整数,
    ∴x=5时,y=4;
    x=10时,y=1;
    ∴购买方案有2种.
    故选B.
    【点睛】
    本题主要考查二元一次方程的应用,关键在于根据题意列方程.
    6、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    7、D
    【解析】
    设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
    【详解】
    设AE=x,
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠D=90°,CD=AB,
    ∵AG平分∠BAD,
    ∴∠DAG=45°,
    ∴△ADG是等腰直角三角形,
    ∴DG=AD=1,
    ∴AG=AD=,
    同理:BE=AE=x, CD=AB=x,
    ∴CG=CD-DG=x -1,
    同理: CG=GF,
    ∴FG= ,
    ∴AE-GF=x-(x-)=.
    故选D.
    【点睛】
    本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
    8、D
    【解析】
    此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
    【详解】
    解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
    又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
    故选D.
    点评:本题考核立意相对较新,考核了学生的空间想象能力.
    9、A
    【解析】
    将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
    【详解】
    (1)当时,,此时,
    ∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
    (2)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
    (3)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
    (4)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
    故选A.
    【点睛】
    熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
    10、D
    【解析】
    先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
    【详解】
    25<32<31,∴5<<1.
    原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
    故选D.
    【点睛】
    本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    解:根据题意可得:列表如下

    红1
    红2
    黄1
    黄2
    黄3
    红1

    红1,红2
    红1,黄1
    红1,黄2
    红1,黄3
    红2
    红2,红1

    红2,黄1
    红2,黄2
    红2,黄3
    黄1
    黄1,红1
    黄1,红2

    黄1,黄2
    黄1,黄3
    黄2
    黄2,红1
    黄2,红2
    黄2,黄1

    黄2,黄3
    黄3
    黄3,红1
    黄3,红2
    黄3,黄1
    黄3,黄2

    共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
    故摸出两个颜色相同的小球的概率为.
    【点睛】
    本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
    12、1.
    【解析】
    根据一元二次方程根与系数的关系求解即可.
    【详解】
    解:根据题意得,,
    所以===1.
    故答案为1.
    【点睛】
    本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.
    13、①②
    【解析】
    过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.
    【详解】
    过P作PM⊥y轴于M,PN⊥x轴于N
    ∵P(1,1),
    ∴PN=PM=1.
    ∵x轴⊥y轴,
    ∴∠MON=∠PNO=∠PMO=90°,
    ∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,
    ∴OM=ON=PN=PM=1,
    ∵∠MPA=∠APB=90°,
    ∴∠MPA=∠NPB.
    ∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
    ∴△MPA≌△NPB,
    ∴PA=PB,故①正确.
    ∵△MPA≌△NPB,
    ∴AM=BN,
    ∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
    当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
    ∵△MPA≌△NPB,
    ∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.
    ∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
    ,∵∠AOB+∠APB=180°,
    ∴点A、O、B、P共圆,且AB为直径,所以
    AB≥OP,故④错误.
    故答案为:①②.
    【点睛】
    本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON
    14、18
    【解析】
    连接OB,
    ∵OA=OB,∴∠B=∠A=30°,
    ∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,
    ∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,
    ∴∠BOC=∠B,∴CB=OC=6,
    ∴AB=AC+BC=18,
    故答案为18.

    15、﹣4.
    【解析】
    作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
    【详解】
    解:作AN⊥x轴于N,如图所示:
    ∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
    ∴可设A(x,﹣x)(x<0),
    在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
    解得:x=﹣2,
    ∴A(﹣2,2),
    代入y=得:k=﹣2×2=﹣4;
    故答案为﹣4.

    【点睛】
    本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
    16、x=0.1
    【解析】
    分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
    详解:方程两边都乘以2(x2﹣1)得,
    8x+2﹣1x﹣1=2x2﹣2,
    解得x1=1,x2=0.1,
    检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
    当x=1时,x﹣1=0,
    所以x=0.1是方程的解,
    故原分式方程的解是x=0.1.
    故答案为:x=0.1
    点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    17、(Ⅰ)AC=4 (Ⅱ)4,2.
    【解析】
    (Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;
    (Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+DC的值最小,解直角三角形即可得到结论.
    【详解】
    解:(Ⅰ)如图,过B作BE⊥AC于E,
    ∵BA=BC=4,
    ∴AE=CE,
    ∵∠A=30°,
    ∴AE=AB=2,
    ∴AC=2AE=4;
    (Ⅱ)如图,作BC的垂直平分线交AC于D,
    则BD=CD,此时BD+DC的值最小,
    ∵BF=CF=2,
    ∴BD=CD= =,
    ∴BD+DC的最小值=2,
    故答案为:4,2.

    【点睛】
    本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)200元和100元(2)至少6件
    【解析】
    (1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
    【详解】
    解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
    得,解得:,
    答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
    200a+100(34﹣a)≥4000,
    解得:a≥6
    答:威丽商场至少需购进6件A种商品.
    19、 (1)详见解析;(2).
    【解析】
    (1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
    (2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
    【详解】
    (1)如图,DE、DF为所作;

    (2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
    ∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
    ∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
    ∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
    故答案为:8.
    【点睛】
    本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    20、(1),,;(2)作图见解析,面积,.
    【解析】
    (1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;
    (2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.
    【详解】
    解:(1)由在平面直角坐标系中的位置可得:
    ,,,
    ∵与关于原点对称,
    ∴,,
    (2)如图所示,即为所求,

    ∵,,
    ∴,
    ∴,
    ∵,
    ∴在旋转过程中所扫过的面积:

    点所经过的路径:

    【点睛】
    本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.
    21、(1),45°;(2)不成立,理由见解析;(3) .
    【解析】
    (1)由正方形的性质,可得 ,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.
    (2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,
    求得∠AHB=30°,故不成立.
    (3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF ,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得: ,所以BF=3﹣3,故BM= .
    ②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.
    【详解】
    解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,
    ∴ ,∠ACB=∠GEC=45°,
    ∴∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣45°=45°,
    故答案为,45°;
    (2)不成立;理由如下:
    ∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,
    ∴,∠ACE=∠BCF,
    ∴△CAE∽△CBF,
    ∴∠CAE=∠CBF,,
    ∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,
    ∵∠CBA=90°,
    ∴∠AHB=180°﹣90°﹣60°=30°;
    (3)分两种情况:
    ①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,
    由(2)得:∠AFB=30°,∠AFC=90°,
    在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,
    ∴AC=,EF=CF×tan30°=6× =2 ,
    在Rt△ACF中,AF= ,
    ∴AE=AF﹣EF=6 ﹣2,
    由(2)得: ,
    ∴BF= (6﹣2)=3﹣3,
    在△BFM中,∵∠AFB=30°,
    ∴BM=BF= ;
    ②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,
    同(2)得:AE=6+2,BF=3+3,
    则BM=BF=;
    综上所述,当A、E、F三点共线时,点B到直线AE的距离为.

    【点睛】
    本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.
    22、(1)CH=AB.;(2)成立,证明见解析;(3)
    【解析】
    (1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.
    【详解】
    解:(1)如图1,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵点E是DC的中点,DE=EC,
    ∴点F是AD的中点,
    ∴AF=FD,
    ∴EC=AF,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.
    如图2,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵AD=CD,DE=DF,
    ∴AF=CE,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (3)如图3,

    ∵CK≤AC+AK,
    ∴当C、A、K三点共线时,CK的长最大,
    ∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
    ∴∠KDF=∠HDE,
    ∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
    ∴∠DFK=∠DEH,
    在△DFK和△DEH中,

    ∴△DFK≌△DEH,
    ∴DK=DH,
    在△DAK和△DCH中,

    ∴△DAK≌△DCH,
    ∴AK=CH
    又∵CH=AB,
    ∴AK=CH=AB,
    ∵AB=3,
    ∴AK=3,AC=3,
    ∴CK=AC+AK=AC+AB=,
    即线段CK长的最大值是.
    考点:四边形综合题.
    23、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
    24、(1)详见解析;(2)OA=.
    【解析】
    (1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
    (2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
    【详解】
    (1)证明:连接OB,

    ∵BE为⊙O的切线,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠ABE+∠OBA=90°,
    ∵OA=OB,
    ∴∠OBA=∠OAB,
    ∴∠ABE+∠OAB=90°,
    ∵AD是⊙O的直径,
    ∴∠OAB+∠ADB=90°,
    ∴∠ABE=∠ADB,
    ∵四边形ABCD的外接圆为⊙O,
    ∴∠EAB=∠C,
    ∵∠E=∠DBC,
    ∴∠ABE=∠BDC,
    ∴∠ADB=∠BDC,
    即DB平分∠ADC;
    (2)解:∵tan∠ABE=,
    ∴设AB=x,则BD=2x,
    ∴,
    ∵∠BAE=∠C,∠ABE=∠BDC,
    ∴△AEB∽△CBD,
    ∴,
    ∴,
    解得x=3,
    ∴AB=x=15,
    ∴OA=.
    【点睛】
    本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.

    相关试卷

    辽宁省市级名校2021-2022学年中考数学五模试卷含解析:

    这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。

    2022届重庆市綦江区市级名校中考数学模试卷含解析:

    这是一份2022届重庆市綦江区市级名校中考数学模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若点P等内容,欢迎下载使用。

    2022届安徽省阜阳地区市级名校中考数学五模试卷含解析:

    这是一份2022届安徽省阜阳地区市级名校中考数学五模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中计算正确的是,已知下列命题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map