|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析01
    2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析02
    2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析

    展开
    这是一份2022届广东省广州三中重点达标名校中考数学最后一模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,图为小明和小红两人的解题过程,下列实数中是无理数的是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )

    A.50° B.60° C.70° D.80°
    2.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是(  )
    A.2 B.3 C.5 D.7
    3.计算(-ab2)3÷(-ab)2的结果是(  )
    A.ab4 B.-ab4 C.ab3 D.-ab3
    4.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )

    A.60° B.65° C.55° D.50°
    5.下列事件是确定事件的是(  )
    A.阴天一定会下雨
    B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
    C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
    D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
    6.图为小明和小红两人的解题过程.下列叙述正确的是( )
    计算:+

    A.只有小明的正确 B.只有小红的正确
    C.小明、小红都正确 D.小明、小红都不正确
    7.对于两组数据A,B,如果sA2>sB2,且,则(  )
    A.这两组数据的波动相同 B.数据B的波动小一些
    C.它们的平均水平不相同 D.数据A的波动小一些
    8.下列实数中是无理数的是(  )
    A. B.2﹣2 C.5. D.sin45°
    9.下列计算正确的是(  )
    A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
    10.在下列二次函数中,其图象的对称轴为的是
    A. B. C. D.
    11.下列命题是真命题的是( )
    A.如实数a,b满足a2=b2,则a=b
    B.若实数a,b满足a<0,b<0,则ab<0
    C.“购买1张彩票就中奖”是不可能事件
    D.三角形的三个内角中最多有一个钝角
    12.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为(  )

    A.0个 B.1个 C.2个 D.3个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.

    14.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.

    15.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:

    则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
    16.在矩形ABCD中,AB=4, BC=3, 点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.
    17.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.

    18.如果a+b=2,那么代数式(a﹣)÷的值是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.
    (1)设∠ONP=α,求∠AMN的度数;
    (2)写出线段AM、BC之间的等量关系,并证明.

    20.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
    (1)求证:DF⊥AC;
    (2)求tan∠E的值.

    21.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
    请结合图表完成下列各题:
    (1)①表中a的值为 ,中位数在第 组;
    ②频数分布直方图补充完整;
    (2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
    (3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
    组别
    成绩x分
    频数(人数)
    第1组
    50≤x<60
    6
    第2组
    60≤x<70
    8
    第3组
    70≤x<80
    14
    第4组
    80≤x<90
    a
    第5组
    90≤x<100
    10

    22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.

    23.(8分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)

    24.(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
    (1)a= ,b= ;
    (2)确定y2与x之间的函数关系式:
    (3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

    25.(10分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.
    (1)求证:△ADE~△ABC;
    (2)当AC=8,BC=6时,求DE的长.

    26.(12分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.

    请结合统计图,回答下列问题:
    (1)本次调查学生共    人,a=   ,并将条形图补充完整;
    (2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
    (3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
    27.(12分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:∵OM=60海里,ON=80海里,MN=100海里,
    ∴OM2+ON2=MN2,
    ∴∠MON=90°,
    ∵∠EOM=20°,
    ∴∠NOF=180°﹣20°﹣90°=70°.
    故选C.
    【点睛】
    本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
    2、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    3、B
    【解析】
    根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
    (-ab2)3÷(-ab)2
    =-a3b6÷a2b2
    =-ab4,
    故选B.
    4、A
    【解析】
    试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
    解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
    ∴∠BCD+∠CDE=540°﹣300°=240°,
    ∵∠BCD、∠CDE的平分线在五边形内相交于点O,
    ∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
    ∴∠P=180°﹣120°=60°.
    故选A.
    考点:多边形内角与外角;三角形内角和定理.
    5、D
    【解析】
    试题分析:找到一定发生或一定不发生的事件即可.
    A、阴天一定会下雨,是随机事件;
    B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
    C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
    D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
    故选D.
    考点:随机事件.
    6、D
    【解析】
    直接利用分式的加减运算法则计算得出答案.
    【详解】
    解:
    =﹣+
    =﹣+

    =,
    故小明、小红都不正确.
    故选:D.
    【点睛】
    此题主要考查了分式的加减运算,正确进行通分运算是解题关键.
    7、B
    【解析】
    试题解析:方差越小,波动越小.

    数据B的波动小一些.
    故选B.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    8、D
    【解析】
    A、是有理数,故A选项错误;
    B、是有理数,故B选项错误;
    C、是有理数,故C选项错误;
    D、是无限不循环小数,是无理数,故D选项正确;
    故选:D.
    9、D
    【解析】
    根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
    【详解】
    解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
    B.(a3)2=a3×2=a6≠a5,故该选项错误;
    C.(ab2)3=a3b6≠ab6,故该选项错误;
    D.a+2a=(1+2)a=3a,故该选项正确;
    故选D.
    考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
    10、A
    【解析】
    y=(x+2)2的对称轴为x=–2,A正确;
    y=2x2–2的对称轴为x=0,B错误;
    y=–2x2–2的对称轴为x=0,C错误;
    y=2(x–2)2的对称轴为x=2,D错误.故选A.
    1.
    11、D
    【解析】
    A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
    B. 同号相乘为正,异号相乘为负,即可判断
    C. “购买1张彩票就中奖”是随机事件即可判断
    D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
    【详解】
    如实数a,b满足a2=b2,则a=±b,A是假命题;
    数a,b满足a<0,b<0,则ab>0,B是假命题;
    若实“购买1张彩票就中奖”是随机事件,C是假命题;
    三角形的三个内角中最多有一个钝角,D是真命题;
    故选:D
    【点睛】
    本题考查了命题与定理,根据实际判断是解题的关键
    12、A
    【解析】
    解:①由函数图象,得a=120÷3=40,
    故①正确,
    ②由题意,得5.5﹣3﹣120÷(40×2),
    =2.5﹣1.5,
    =1.
    ∴甲车维修的时间为1小时;
    故②正确,
    ③如图:

    ∵甲车维修的时间是1小时,
    ∴B(4,120).
    ∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
    ∴E(5,240).
    ∴乙行驶的速度为:240÷3=80,
    ∴乙返回的时间为:240÷80=3,
    ∴F(8,0).
    设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
    ,,
    解得,,
    ∴y1=80t﹣200,y2=﹣80t+640,
    当y1=y2时,
    80t﹣200=﹣80t+640,
    t=5.2.
    ∴两车在途中第二次相遇时t的值为5.2小时,
    故弄③正确,
    ④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
    ∴两车相距的路程为:120﹣80=40千米,
    故④正确,
    故选A.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(﹣,1)
    【解析】
    如图作AF⊥x轴于F,CE⊥x轴于E.

    ∵四边形ABCD是正方形,
    ∴OA=OC,∠AOC=90°,
    ∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
    ∴∠COE=∠OAF,
    在△COE和△OAF中,

    ∴△COE≌△OAF,
    ∴CE=OF,OE=AF,
    ∵A(1,),
    ∴CE=OF=1,OE=AF=,
    ∴点C坐标(﹣,1),
    故答案为(,1).
    点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    14、+1
    【解析】
    根据对称性可知:GJ∥BH,GB∥JH,
    ∴四边形JHBG是平行四边形,
    ∴JH=BG,
    同理可证:四边形CDFB是平行四边形,
    ∴CD=FB,
    ∴FG+JH+CD=FG+BG+FB=2BF,
    设FG=x,
    ∵∠AFG=∠AFB,∠FAG=∠ABF=36°,
    ∴△AFG∽△BFA,
    ∴AF2=FG•BF,
    ∵AF=AG=BG=1,
    ∴x(x+1)=1,
    ∴x=(负根已经舍弃),
    ∴BF=+1=,
    ∴FG+JH+CD=+1.
    故答案为+1.
    15、
    【解析】
    根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
    【详解】
    ∵y1=,∴y2===,y3=,……
    yn=.
    故答案为:.
    【点睛】
    本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.
    16、或
    【解析】
    ①点A落在矩形对角线BD上,如图1,
    ∵AB=4,BC=3,
    ∴BD=5,
    根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,
    ∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,
    ∴(4﹣x)2=x2+22,
    解得:x=,∴AP=;
    ②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,
    ∴△DAP∽△ABC,
    ∴,
    ∴AP===.
    故答案为或.

    17、3
    【解析】
    试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
    考点:3.等腰三角形的性质;3.垂直平分线的性质.
    18、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)45°(2),理由见解析
    【解析】
    (1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;
    (2)由等腰直角三角形的性质和正方形的性质可得,,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得.
    【详解】
    解:(1)如图,连接MP,

    ∵直线l是线段MN的垂直平分线,
    ∴PM=PN,PO⊥MN
    ∴∠PMN=∠PNM=α
    ∴∠MPO=∠NPO=90°-α,
    ∵四边形ABNP是正方形
    ∴AP=PN,∠APN=90°
    ∴AP=MP,∠APO=90°-(90°-α)=α
    ∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
    ∵AP=PM
    ∴,
    ∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
    (2)
    理由如下:
    如图,连接AN,CN,

    ∵直线l是线段MN的垂直平分线,
    ∴CM=CN,
    ∴∠CMN=∠CNM=45°,
    ∴∠MCN=90°
    ∴,
    ∵四边形APNB是正方形
    ∴∠ANB=∠BAN=45°
    ∴,∠MNC=∠ANB=45°
    ∴∠ANM=∠BNC
    又∵
    ∴△CBN∽△MAN


    【点睛】
    本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.
    20、(1)证明见解析;(2)tan∠CBG=.
    【解析】
    (1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
    (2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
    【详解】
    解:(1)证明:连接OD,CD,
    ∵BC是⊙O的直径,
    ∴∠BDC=90°,
    ∴CD⊥AB,
    ∵AC=BC,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线
    ∴OD∥AC,
    ∵DF为⊙O的切线,
    ∴OD⊥DF,
    ∴DF⊥AC;
    (2)解:如图,连接BG,
    ∵BC是⊙O的直径,
    ∴∠BGC=90°,
    ∵∠EFC=90°=∠BGC,
    ∴EF∥BG,
    ∴∠CBG=∠E,
    Rt△BDC中,∵BD=3,BC=5,
    ∴CD=4,
    ∵S△ABC=,即6×4=5BG,
    ∴BG=,
    由勾股定理得:CG=,
    ∴tan∠CBG=tan∠E=.

    【点睛】
    本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
    21、(1)①12,3. ②详见解析.(2).
    【解析】
    分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
    (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
    (3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
    详解:(1)①a=50﹣(6+8+14+10)=12,
    中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
    所以中位数落在第3组,
    故答案为12,3;
    ②如图,

    (2)×100%=44%,
    答:本次测试的优秀率是44%;
    (3)设小明和小强分别为A、B,另外两名学生为:C、D,
    则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
    所以小明和小强分在一起的概率为:.
    点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
    22、(1)y=-,y=-2x-1(2)1
    【解析】
    试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,
    =m+8,
    解得m=﹣6,
    m+8=﹣6+8=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣1;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣1=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×3+×2×1,
    =3+1,
    =1.
    考点:反比例函数与一次函数的交点问题.
    23、建筑物AB的高度约为5.9米
    【解析】
    在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
    【详解】
    在Rt△CED中,∠CED=58°,
    ∵tan58°=,
    ∴DE= ,
    在Rt△CFD中,∠CFD=22°,
    ∵tan22°= ,
    ∴DF= ,
    ∴EF=DF﹣DE=-,
    同理:EF=BE﹣BF= ,
    ∴=-,
    解得:AB≈5.9(米),
    答:建筑物AB的高度约为5.9米.
    【点睛】
    考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
    24、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.
    【解析】
    (1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;
    (2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;
    (3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.
    【详解】
    (1)由y1图像上点(10,480),得到10人的费用为480元,
    ∴a=;
    由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,
    ∴b=;
    (2)
    0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800,
    解得k2=80,
    ∴y2=80x,
    x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得
    解得
    ∴y2=64x+160

    (3)设B团有n人,则A团的人数为(50-n)
    当0≤n≤10时80n+48(50-n)=3040,
    解得n=20(不符合题意舍去)
    当n>10时,
    解得n=30.
    则50-n=20人,
    则A团有20人,B团有30人.
    【点睛】
    此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.
    25、(1)见解析;(2).
    【解析】
    (1)根据两角对应相等,两三角形相似即可判定;
    (2)利用相似三角形的性质即可解决问题.
    【详解】
    (1)∵DE⊥AB,∴∠AED=∠C=90°.
    ∵∠A=∠A,∴△AED∽△ACB.
    (2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.
    ∵DE垂直平分AB,∴AE=EB=2.
    ∵△AED∽△ACB,∴,∴,∴DE.
    【点睛】
    本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
    26、(1)300,10; (2)有800人;(3) .
    【解析】试题分析:
    试题解析:(1)120÷40%=300,
    a%=1﹣40%﹣30%﹣20%=10%,
    ∴a=10,
    10%×300=30,
    图形如下:

    (2)2000×40%=800(人),
    答:估计该校选择“跑步”这种活动的学生约有800人;
    (3)画树状图为:

    共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
    所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
    考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
    27、
    【解析】
    对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
    【详解】
    原式=×-1
    =-1
    =
    =,
    当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
    原式=.
    【点睛】
    本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.

    相关试卷

    2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,如图,一段抛物线等内容,欢迎下载使用。

    2022年广东省揭阳市惠来县重点达标名校中考数学最后一模试卷含解析: 这是一份2022年广东省揭阳市惠来县重点达标名校中考数学最后一模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,﹣23的相反数是等内容,欢迎下载使用。

    2022年广东省广州市名校联盟中考数学最后一模试卷含解析: 这是一份2022年广东省广州市名校联盟中考数学最后一模试卷含解析

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map