2022届广东省阳江市实验中学中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
2.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).
A. B. C. D.
3.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
4.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是( )
A. B. C. D.
5.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )
A.30° B.40° C.50° D.60°
6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
7.分式有意义,则x的取值范围是( )
A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
8.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种 B.2种 C.3种 D.4种
9.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).
A. B. C. D.
10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
12.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
13.如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.
14.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.
15.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.
16.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
17.下面是“作已知圆的内接正方形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接正方形.
作法:如图,
(1)作⊙O的直径AB;
(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;
(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.
请回答:该尺规作图的依据是_____.
三、解答题(共7小题,满分69分)
18.(10分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(Ⅰ)该教师调查的总人数为 ,图②中的m值为 ;
(Ⅱ)求样本中分数值的平均数、众数和中位数.
19.(5分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
(3)当线段AM最短时,求重叠部分的面积.
20.(8分)一道选择题有四个选项.
(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
21.(10分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.
22.(10分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:
甲
7.2 9.69.67.89.3 4 6.58.59.99.6
乙
5.89.79.76.89.96.98.26.78.69.7
根据上面的数据,将下表补充完整:
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
____
____
_____
______
_____
_______
(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
两组样本数据的平均数、中位数、众数如表所示:
结论:
人员
平均数(万元)
中位数(万元)
众数(万元)
甲
8.2
8.9
9.6
乙
8.2
8.4
9.7
(1)估计乙业务员能获得奖金的月份有______个;
(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
23.(12分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
24.(14分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.
(1)已知点A的坐标为,
①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
2、D
【解析】
设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
解:∵,..又∵过点,交于点,∴,
∴,∴.故选D.
3、A
【解析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
4、B
【解析】
画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得.
【详解】
画树状图如下:
由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,
所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,
故选B.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
5、D
【解析】
如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.
6、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7、A
【解析】
直接利用分式有意义则分母不为零进而得出答案.
【详解】
解:分式有意义,
则x﹣1≠0,
解得:x≠1.
故选:A.
【点睛】
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
8、B
【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
【详解】
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,
y=7-x,
∵x、y都是正整数,
∴x=5时,y=4;
x=10时,y=1;
∴购买方案有2种.
故选B.
【点睛】
本题主要考查二元一次方程的应用,关键在于根据题意列方程.
9、B
【解析】
如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
【详解】
如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B
【点睛】
本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
10、B
【解析】
试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
∴⊙C的半径为,故选B.
考点:圆的切线的性质;勾股定理.
二、填空题(共7小题,每小题3分,满分21分)
11、-1
【解析】
试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
考点:反比例外函数k的几何意义.
12、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
13、4
【解析】
分别过点、点作的垂线,垂足分别为点、点,根据是的中点得到为的中位线,然后设,,,根据,得到,最后根据面积求得,从而求得.
【详解】
分别过点、点作的垂线,垂足分别为点、点,如图
点为的中点,
为的中位线,
,,,
,
,
,
,
,
.
故答案为:.
【点睛】
本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.
14、x<1
【解析】
根据一次函数的性质得出不等式解答即可.
【详解】
因为一次函数y=﹣2(x+1)+4的值是正数,
可得:﹣2(x+1)+4>0,
解得:x<1,
故答案为x<1.
【点睛】
本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.
15、13
【解析】
利用因式分解法求出解已知方程的解确定出第三边,即可求出该三角形的周长.
【详解】
方程x2-14x+48=0,
分解因式得:(x-6)(x-8)=0,
解得:x=6或x=8,
当x=6时,三角形周长为3+4+6=13,
当x=8时,3+4<8不能构成三角形,舍去,
综上,该三角形的周长为13,
故答案为13
【点睛】
此题考查了解一元二次方程-因式分解法,以及三角形三边关系,熟练掌握运算法则是解本题的关键.
16、2:1
【解析】
先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
故答案为2:1.
点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
17、相等的圆心角所对的弦相等,直径所对的圆周角是直角.
【解析】
根据圆内接正四边形的定义即可得到答案.
【详解】
到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.
【点睛】
本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.
三、解答题(共7小题,满分69分)
18、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.
【解析】
(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;
(2)根据平均数、众数和中位数的定义求解即可.
【详解】
(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),
m%=×100%=40%,即m=40,
故答案为:25、40;
(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
则样本分知的平均数为(分),
众数为75分,中位数为第13个数据,即75分.
【点睛】
理解两幅统计图中各数据的含义及其对应关系是解题关键.
19、(1)证明见解析;(2)能;BE=1或;(3)
【解析】
(1)证明:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)能.
∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
当AE=EM时,则△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC−EC=6−5=1,
当AM=EM时,则∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴,
∴CE=,
∴BE=6−=;
∴BE=1或;
(3)解:设BE=x,
又∵△ABE∽△ECM,
∴,即:,
∴CM=,
∴AM=5−CM,
∴当x=3时,AM最短为,
又∵当BE=x=3=BC时,
∴点E为BC的中点,
∴AE⊥BC,
∴AE=,
此时,EF⊥AC,
∴EM=,
S△AEM=.
20、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
21、
【解析】
画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,
所以两次抽取的牌上的数字都是偶数的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
22、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【解析】
(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
(2)根据中位数和平均数即可解题.
【详解】
解:如图,
销售额
数量
x
人员
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
0
1
3
0
2
4
(1)估计乙业务员能获得奖金的月份有6个;
(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【点睛】
本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
23、(1)75°(2)见解析
【解析】
(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
【详解】
解:(1)∵△ABC是等边三角形
∴∠ACB=60°,BC=AC
∵等边△ABC绕点C顺时针旋转90°得到△EFC
∴CF=BC,∠BCF=90°,AC=CE
∴CF=AC
∵∠BCF=90°,∠ACB=60°
∴∠ACF=∠BCF﹣∠ACB=30°
∴∠CFA=(180°﹣∠ACF)=75°
(2)∵△ABC和△EFC是等边三角形
∴∠ACB=60°,∠E=60°
∵CD平分∠ACE
∴∠ACD=∠ECD
∵∠ACD=∠ECD,CD=CD,CA=CE,
∴△ECD≌△ACD(SAS)
∴∠DAC=∠E=60°
∴∠DAC=∠ACB
∴AD∥BC
【点睛】
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
24、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
【解析】
(1)①根据“和谐点”的定义即可解决问题;
②首先求出点C坐标,再利用待定系数法即可解决问题;
(2)分两种情形画出图形即可解决问题.
【详解】
(1)①如图1.
观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
②如图2.
由图可知,B(5,3).
∵A(1,3),∴AB=3.
∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
(2)分两种情况讨论:
①当点F在点E左侧时:
连接OD.则OD=,∴.
②当点F在点E右侧时:
连接OE,OD.
∵E(1,2),D(1,3),∴OE=,OD=,∴.
综上所述:或.
【点睛】
本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
吉林实验中学2021-2022学年中考适应性考试数学试题含解析: 这是一份吉林实验中学2021-2022学年中考适应性考试数学试题含解析,共14页。试卷主要包含了答题时请按要求用笔,函数的图像位于等内容,欢迎下载使用。
2022年广东省深圳市锦华实验学校中考适应性考试数学试题含解析: 这是一份2022年广东省深圳市锦华实验学校中考适应性考试数学试题含解析,共23页。试卷主要包含了把直线l等内容,欢迎下载使用。
2022年广东省宝塔实验重点达标名校中考适应性考试数学试题含解析: 这是一份2022年广东省宝塔实验重点达标名校中考适应性考试数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,二元一次方程组的解是,已知,代数式的值为等内容,欢迎下载使用。