2022届广东省茂名市行知中学中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
2.两个有理数的和为零,则这两个数一定是( )
A.都是零 B.至少有一个是零
C.一个是正数,一个是负数 D.互为相反数
3.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为( )
A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣3
4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1 D.
5.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=( )
A. B. C.12 D.24
6.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5
7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A.(,2) B.(4,1) C.(4,) D.(4,)
8.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
9.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A. B. C. D.
10.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
二、填空题(共7小题,每小题3分,满分21分)
11.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.
12.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
13.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.
14.方程的解为 .
15.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___
16.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.
17.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
(1)求证:PM∥AD;
(2)若∠BAP=2∠M,求证:PA是⊙O的切线;
(3)若AD=6,tan∠M=,求⊙O的直径.
19.(5分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
20.(8分)先化简,再求值:,其中满足.
21.(10分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
22.(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.
23.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
24.(14分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )
A.40° B.55° C.65° D.75°
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
2、D
【解析】
解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.
3、A
【解析】
分析:
详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得: ,
即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.
点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.
4、C
【解析】
作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
【详解】
试题分析:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,
∴BM=MH=,
∴AB=2+,
∴AC=AB=(2+)=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴,即,
∴ON=1.
故选C.
【点睛】
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
5、A
【解析】
解:如图,设对角线相交于点O,
∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,
由勾股定理的,AB===5,
∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,
即5DH=×8×6,解得DH=.
故选A.
【点睛】
本题考查菱形的性质.
6、D
【解析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
解:A、平均数为=3,正确;
B、重新排列为1、2、3、3、6,则中位数为3,正确;
C、众数为3,正确;
D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
故选:D.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
7、D
【解析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
【详解】
解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),
故选:D.
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
8、A
【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
【详解】
由数轴可知,b<a<0<c,
∴c-a>0,a+b<0,
则|c-a|-|a+b|=c-a+a+b=c+b,
故选A.
【点睛】
本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
9、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
【点睛】
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
10、B
【解析】
试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、1.
【解析】
解:∵四边形ABCD是菱形,∠D=78°,
∴∠ACB=(180°-∠D)=51°,
又∵四边形AECD是圆内接四边形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB-∠ACB=1°.
故答案为:1°
12、4.8或
【解析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以=,
即=,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以=,
即=,
解得t=.
综上所述,当t=4.8或时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
13、
【解析】
由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
【详解】
设MN与OP交于点E,
∵点O、P的距离为4,
∴OP=4
∵折叠
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=
在Rt△ONE中,NE=
∴MN=ME-NE=2-
故答案为2-
【点睛】
本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
14、.
【解析】
试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
,经检验,是原方程的根.
15、100°
【解析】
由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.
【详解】
解:∵PA=PB,
∴∠A=∠B,
在△AMK和△BKN中,
,
∴△AMK≌△BKN(SAS),
∴∠AMK=∠BKN,
∵∠A+∠AMK=∠MKN+∠BKN,
∴∠A=∠MKN=40°,
∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,
故答案为100°
【点睛】
本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.
16、(1,0);(﹣5,﹣2).
【解析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
【详解】
∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,
故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).
17、14s或38s.
【解析】
试题解析:分两种情况进行讨论:
如图:
旋转的度数为:
每两秒旋转
如图:
旋转的度数为:
每两秒旋转
故答案为14s或38s.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)证明见解析;(3)1;
【解析】
(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.
【详解】
(1)∵BD是直径,
∴∠DAB=90°,
∵PO⊥AB,
∴∠DAB=∠MCB=90°,
∴PM∥AD;
(2)连接OA,
∵OB=OM,
∴∠M=∠OBM,
∴∠BON=2∠M,
∵∠BAP=2∠M,
∴∠BON=∠BAP,
∵PO⊥AB,
∴∠ACO=90°,
∴∠AON+∠OAC=90°,
∵OA=OB,
∴∠BON=∠AON,
∴∠BAP=∠AON,
∴∠BAP+∠OAC=90°,
∴∠OAP=90°,
∵OA是半径,
∴PA是⊙O的切线;
(3)连接BN,
则∠MBN=90°.
∵tan∠M=,
∴=,
设BC=x,CM=2x,
∵MN是⊙O直径,NM⊥AB,
∴∠MBN=∠BCN=∠BCM=90°,
∴∠NBC=∠M=90°﹣∠BNC,
∴△MBC∽△BNC,
∴,
∴BC2=NC×MC,
∴NC=x,
∴MN=2x+x=2.1x,
∴OM=MN=1.21x,
∴OC=2x﹣1.21x=0.71x,
∵O是BD的中点,C是AB的中点,AD=6,
∴OC=0.71x=AD=3,
解得:x=4,
∴MO=1.21x=1.21×4=1,
∴⊙O的半径为1.
【点睛】
本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.
19、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
20、,1.
【解析】
原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可.
【详解】
解:原式
∵,
∴,
∴原式
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
21、(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个
22、见解析
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥DC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
∴△AEO≌△CFO(ASA),
∴OE=OF.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
23、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
【解析】
(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
(3)①△AGH的面积不变.理由三角形的面积公式计算即可;
②分三种情形分别求解即可解决问题.
【详解】
(1)∵四边形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
∴∠AHC=∠ACG.
故答案为=.
(2)结论:AC2=AG•AH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
∴△AHC∽△ACG,
∴,
∴AC2=AG•AH.
(3)①△AGH的面积不变.
理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
∴△AGH的面积为1.
②如图1中,当GC=GH时,易证△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴,
∴AE=AB=.
如图2中,当CH=HG时,
易证AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=2.
如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.
在BC上取一点M,使得BM=BE,
∴∠BME=∠BEM=43°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.3°,
∴CM=EM,设BM=BE=m,则CM=EMm,
∴m+m=4,
∴m=4(﹣1),
∴AE=4﹣4(﹣1)=8﹣4,
综上所述,满足条件的m的值为或2或8﹣4.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
24、C.
【解析】
试题分析:由作图方法可得AG是∠CAB的角平分线,
∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,
故选C.
考点:作图—基本作图.
广东省茂名市行知中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份广东省茂名市行知中学2023-2024学年数学九上期末质量检测试题含答案,共9页。试卷主要包含了下列各组图形中,是相似图形的是,方程x2-x-1=0的根是,的值等于等内容,欢迎下载使用。
广东省茂名市行知中学2023-2024学年八上数学期末学业质量监测试题含答案: 这是一份广东省茂名市行知中学2023-2024学年八上数学期末学业质量监测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
广东省茂名市行知中学2023-2024学年数学八上期末达标检测模拟试题含答案: 这是一份广东省茂名市行知中学2023-2024学年数学八上期末达标检测模拟试题含答案,共7页。试卷主要包含了已知,若m=,则m介于哪两个整数之间等内容,欢迎下载使用。