|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析
    立即下载
    加入资料篮
    2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析01
    2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析02
    2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析

    展开
    这是一份2022届广东省深圳市南山区实验教育集团重点中学中考数学押题卷含解析,共24页。试卷主要包含了下列各数中是有理数的是,汽车刹车后行驶的距离s等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是(  )
    A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
    2.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有(  )

    A.1个 B.3个 C.4个 D.5个
    3.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是(  )
    月用电量(度)
    25
    30
    40
    50
    60
    户数
    1
    2
    4
    2
    1
    A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
    4.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为(  )

    A.5 B.6 C.7 D.8
    5.下列各数中是有理数的是(  )
    A.π B.0 C. D.
    6.如图所示,的顶点是正方形网格的格点,则的值为(  )

    A. B. C. D.
    7.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是(  )
    A.10m B.20m C.30m D.40m
    8.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )

    A.π B. C. D.
    9.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    10.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.

    12.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)
    13.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    14.分解因式=________,=__________.
    15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.

    16.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.

    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.

    (1)直接写出点E的坐标(用含t的代数式表示):   ;
    (2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
    (3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
    18.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
    (1)求证:CF是⊙O的切线;
    (2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)

    19.(8分)先化简,再求值:,其中,.
    20.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
    (1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
    (2)当直线l与AD边有公共点时,求t的取值范围.

    21.(8分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
    (1)把△ABC绕点A旋转到图1,BD,CE的关系是   (选填“相等”或“不相等”);简要说明理由;
    (2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=   ,简要说明计算过程;
    (3)在(2)的条件下写出旋转过程中线段PD的最小值为   ,最大值为   .

    22.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    23.(12分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
    m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
    24.定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
    (1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
    (2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    A、根据同底数幂的除法法则计算;
    B、根据同底数幂的乘法法则计算;
    C、根据积的乘方法则进行计算;
    D、根据合并同类项法则进行计算.
    【详解】
    解:A、a6÷a3=a3,故原题错误;
    B、3a2•2a=6a3,故原题正确;
    C、(3a)2=9a2,故原题错误;
    D、2x2﹣x2=x2,故原题错误;
    故选B.
    【点睛】
    考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
    2、B
    【解析】
    根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
    由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
    因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
    根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
    根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
    正确的共有3个.
    故选B.
    点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
    3、C
    【解析】
    极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
    【详解】
    解:A、这组数据的极差是:60-25=35,故本选项错误;
    B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
    C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
    D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
    故选:C.
    【点睛】
    本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
    4、C
    【解析】
    作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
    【详解】
    解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
    设D(x,),
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC,∠ADC=∠DCB=90°,
    易得△AGD≌△DHC≌△CMB(AAS),
    ∴AG=DH=﹣x﹣1,
    ∴DG=BM,
    ∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
    由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
    解得x=﹣2,
    ∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
    ∵AG=DH=﹣1﹣x=1,
    ∴点E的纵坐标为﹣4,
    当y=﹣4时,x=﹣,
    ∴E(﹣,﹣4),
    ∴EH=2﹣=,
    ∴CE=CH﹣HE=4﹣=,
    ∴S△CEB=CE•BM=××4=7;

    故选C.
    【点睛】
    考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
    5、B
    【解析】
    【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
    【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
    B、0是有理数,故本选项正确;
    C、是无理数,故本选项错误;
    D、是无理数,故本选项错误,
    故选B.
    【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
    6、B
    【解析】
    连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.
    【详解】
    解:连接CD(如图所示),设小正方形的边长为,
    ∵BD=CD==,∠DBC=∠DCB=45°,
    ∴,
    在中,,,则.

    故选B.
    【点睛】
    本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.
    7、B
    【解析】
    利用配方法求二次函数最值的方法解答即可.
    【详解】
    ∵s=20t-5t2=-5(t-2)2+20,
    ∴汽车刹车后到停下来前进了20m.
    故选B.
    【点睛】
    此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
    8、B
    【解析】
    连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
    【详解】
    解:连接OB,OC.

    ∵∠BOC=2∠BAC=60°,
    ∵OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=1,
    ∴的长=,
    故选B.
    【点睛】
    考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    9、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    10、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3
    【解析】
    【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
    【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
    ∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
    ∴EF=BC=3,AE=AB,
    ∵DE=EF,
    ∴AD=DE=3,
    ∴AE==3,
    ∴AB=3,
    故答案为3.
    【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
    12、2.5×1
    【解析】
    先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    【详解】
    1 300 000 000÷52÷1 000(千克)=25 000(千克)=2.5×1(千克).
    故答案为2.5×1.
    【点睛】
    本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
    13、1
    【解析】
    设点P(m,m+2),
    ∵OP=,
    ∴ =,
    解得m1=1,m2=﹣1(不合题意舍去),
    ∴点P(1,1),
    ∴1=,
    解得k=1.
    点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.
    14、
    【解析】
    此题考查因式分解

    答案
    点评:利用提公因式、平方差公式、完全平方公式分解因式
    15、210°
    【解析】
    根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.
    【详解】
    解:如图:

    ∵∠C=∠F=90°,∠A=45°,∠D=30°,
    ∴∠B=45°,∠E=60°,
    ∴∠2+∠3=120°,
    ∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,
    故答案为:210°.
    【点睛】
    本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
    16、
    【解析】
    先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
    【详解】
    分别过点 作y轴的垂线交y轴于点,

    ∵点B在上









    同理, 都是含30°的直角三角形
    ∵,


    同理,点 的横坐标为
    纵坐标为
    故点的坐标为
    故答案为:;.
    【点睛】
    本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.

    三、解答题(共8题,共72分)
    17、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
    【解析】
    (1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
    由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
    ∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
    又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
    在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
    ∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
    (2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
    ∴AD=t(4﹣t),
    ∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
    ∵EG⊥x轴、FP⊥x轴,且EG=FP,
    ∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
    ∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
    ∴当t=2时,S有最小值是16;
    (3)①假设∠FBD为直角,则点F在直线BC上,
    ∵PF=OP<AB,
    ∴点F不可能在BC上,即∠FBD不可能为直角;
    ②假设∠FDB为直角,则点D在EF上,
    ∵点D在矩形的对角线PE上,
    ∴点D不可能在EF上,即∠FDB不可能为直角;
    ③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
    如图2,作FH⊥BD于点H,
    则FH=PA,即4﹣t=6﹣t,方程无解,
    ∴假设不成立,即△BDF不可能是等腰直角三角形.

    18、(1)证明见解析;(2)9﹣3π
    【解析】
    试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
    试题解析:(1)如图连接OD.
    ∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
    ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
    在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
    ∴CF⊥OD, ∴CF是⊙O的切线.
    (2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
    ∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
    ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
    ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
    ∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.

    19、9
    【解析】
    根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
    【详解】



    当,时,
    原式



    【点睛】
    本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
    20、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
    【解析】
    (1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
    (2)当直线l经过点D时,设l的解析式代入数值解出即可
    【详解】
    (1)此时点A在直线l上.
    ∵BC=AB=2,点O为BC中点,
    ∴点B(-1,0),A(-1,2).
    把点A的横坐标x=-1代入解析式y=2x+4,得
    y=2,等于点A的纵坐标2,
    ∴此时点A在直线l上.
    (2)由题意可得,点D(1,2),及点M(-2,0),
    当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
    ∴解得
    由(1)知,当直线l经过点A时,t=4.
    ∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.

    【点睛】
    本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
    21、(1)BD,CE的关系是相等;(2)或;(3)1,1
    【解析】
    分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
    (2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
    (3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
    详解:(1)BD,CE的关系是相等.
    理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
    ∴BA=CA,∠BAD=∠CAE,DA=EA,
    ∴△ABD≌△ACE,
    ∴BD=CE;
    故答案为相等.
    (2)作出旋转后的图形,若点C在AD上,如图2所示:

    ∵∠EAC=90°,
    ∴CE=,
    ∵∠PDA=∠AEC,∠PCD=∠ACE,
    ∴△PCD∽△ACE,
    ∴,
    ∴PD=;
    若点B在AE上,如图2所示:

    ∵∠BAD=90°,
    ∴Rt△ABD中,BD=,BE=AE﹣AB=2,
    ∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
    ∴△BAD∽△BPE,
    ∴,即,
    解得PB=,
    ∴PD=BD+PB=+=,
    故答案为或;
    (3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
    如图3所示,分两种情况讨论:

    在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
    ①当小三角形旋转到图中△ACB的位置时,
    在Rt△ACE中,CE==4,
    在Rt△DAE中,DE=,
    ∵四边形ACPB是正方形,
    ∴PC=AB=3,
    ∴PE=3+4=1,
    在Rt△PDE中,PD=,
    即旋转过程中线段PD的最小值为1;
    ②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
    此时,DP'=4+3=1,
    即旋转过程中线段PD的最大值为1.
    故答案为1,1.
    点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
    22、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    23、 (1)、26%;50;(2)、公交车;(3)、300名.
    【解析】
    试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
    试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
    骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:

    (2)、由图可知,采用乘公交车上学的人数最多
    (3)、该校骑自行车上学的人数约为:1500×20%=300(名).
    答:该校骑自行车上学的学生有300名.
    考点:统计图
    24、y=x﹣5
    【解析】
    分析:(1)根据定义,直接变形得到伴生一次函数的解析式;
    (2)求出顶点,代入伴生函数解析式即可求解;
    (3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.
    详解:(1)∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,
    故答案为y=x﹣5;
    (2)∵二次函数y=(x﹣1)2﹣4,
    ∴顶点坐标为(1,﹣4),
    ∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=x﹣5,
    ∴当x=1时,y=1﹣5=﹣4,
    ∴(1,﹣4)在直线y=x﹣5上,
    即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)∵二次函数y=m(x﹣1)2﹣4m,
    ∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,
    ∵P点的横坐标为n,(n>2),
    ∴P的纵坐标为m(n﹣1)2﹣4m,
    即:P(n,m(n﹣1)2﹣4m),
    ∵PQ∥x轴,
    ∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
    ∴PQ=(n﹣1)2+1﹣n,
    ∵线段PQ的长为,
    ∴(n﹣1)2+1﹣n=,
    ∴n=.
    点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.

    相关试卷

    2024年广东省深圳市南山实验教育集团中考数学二模试卷(含解析): 这是一份2024年广东省深圳市南山实验教育集团中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2024年广东省深圳市南山区育才教育集团中考数学一模试卷(含解析): 这是一份2024年广东省深圳市南山区育才教育集团中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省深圳市南山区育才教育集团中考数学三模试卷(含解析): 这是一份2023年广东省深圳市南山区育才教育集团中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map