2022届广西贺州市昭平县中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
A.6 B.5 C.2 D.3
2.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )
A. B. C. D.
3.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子.
A.37 B.42 C.73 D.121
4.点是一次函数图象上一点,若点在第一象限,则的取值范围是( ).
A. B. C. D.
5.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为( )
A.向下平移3个单位 B.向上平移3个单位
C.向左平移4个单位 D.向右平移4个单位
6.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
7.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
8.如图,在△ABC中,DE∥BC,若,则等于( )
A. B. C. D.
9.下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4 B.3 C.2 D.1
10.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )
A. B. C. D.
11.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
12.估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.
14.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
15.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
16.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF1=BE1+DF1;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=1S△AEF
⑦S正方形ABCD:S△AMN=1AB:MN
⑧设AB=a,MN=b,则≥1﹣1.
17.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
18.计算:(+)=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
根据图中信息求出 , ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
20.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
(1)求此抛物线所对应的函数表达式.
(2)求PF的长度,用含m的代数式表示.
(3)当四边形PEDF为平行四边形时,求m的值.
21.(6分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
22.(8分)如图所示,已知,试判断与的大小关系,并说明理由.
23.(8分)(1)解方程:.
(2)解不等式组:
24.(10分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
25.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
26.(12分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
27.(12分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵BE:ED=1:3,
∴BE:OB=1:2,
∵AE⊥BD,
∴AB=OA,
∴OA=AB=OB,
即△OAB是等边三角形,
∴∠ABD=60°,
∵AE⊥BD,AE=3,
∴AB=,
故选C.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
2、C
【解析】
根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.
【详解】
解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.
【点睛】
考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;
3、C
【解析】
解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
4、B
【解析】
试题解析:把点代入一次函数得,
.
∵点在第一象限上,
∴,可得,
因此,即,
故选B.
5、A
【解析】
将抛物线平移,使平移后所得抛物线经过原点,
若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;
若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,
故选A.
6、C
【解析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
故答案为C
7、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
8、C
【解析】
试题解析::∵DE∥BC,
∴,
故选C.
考点:平行线分线段成比例.
9、C
【解析】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C.
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
10、D
【解析】
根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
【详解】
解:
===,
故选D.
【点睛】
本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
11、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
12、D
【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣1
【解析】
先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
【详解】
在正方形ABCD中,AB=BC,∠ABC=∠BCD,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
∵∠CBF+∠ABF=90°
∴∠BAE+∠ABF=90°
∴∠AGB=90°
∴点G在以AB为直径的圆上,
由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
∵正方形ABCD,BC=2,
∴AO=1=OG
∴OD=,
∴DG=−1,
故答案为−1.
【点睛】
本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
14、增大.
【解析】
根据二次函数的增减性可求得答案
【详解】
∵二次函数y=x2
的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
故答案为:增大.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
15、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
16、①②③④⑤⑥⑦.
【解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
【详解】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
则∠DAH=∠BAM,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠MAN=45°,
∴∠BAN+∠DAN=45°,
∴∠NAH=45°,
在△MAN和△HAN中,
,
∴△MAN≌△HAN,
∴MN=NH=BM+DN,①正确;
∵BM+DN≥1,(当且仅当BM=DN时,取等号)
∴BM=DN时,MN最小,
∴BM=b,
∵DH=BM=b,
∴DH=DN,
∵AD⊥HN,
∴∠DAH=∠HAN=11.5°,
在DA上取一点G,使DG=DH=b,
∴∠DGH=45°,HG=DH=b,
∵∠DGH=45°,∠DAH=11.5°,
∴∠AHG=∠HAD,
∴AG=HG=b,
∴AB=AD=AG+DG=b+b=b=a,
∴,
∴,
当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
即:,
∴≤≤1,⑧错误;
∵MN=NH=BM+DN
∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
∵△MAN≌△HAN,
∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;
如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AD,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE1=BH1+BE1,
∵BH=DF,EF=HE,
∵EF1=BE1+DF1,③结论正确;
∵四边形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,
∴A、E、N、D四点共圆,
∴∠ADN+∠AEN=180°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;⑤结论正确;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM=AF,AN=AE,
如图3,过点M作MP⊥AN于P,
在Rt△APM中,∠MAN=45°,
∴MP=AMsin45°,
∵S△AMN=AN•MP=AM•AN•sin45°,
S△AEF=AE•AF•sin45°,
∴S△AMN:S△AEF=1,
∴S△AMN=1S△AEF,⑥正确;
∵点A到MN的距离等于正方形ABCD的边长,
∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
即:正确的有①②③④⑤⑥⑦,
故答案为①②③④⑤⑥⑦.
【点睛】
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
17、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
18、1.
【解析】
去括号后得到答案.
【详解】
原式=×+×=2+1=1,故答案为1.
【点睛】
本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)100,35;(2)补全图形,如图;(3)800人
【解析】
(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
【详解】
解:(1)∵被调查总人数为m=10÷10%=100人,
∴用支付宝人数所占百分比n%= ,
∴m=100,n=35.
(2)网购人数为100×15%=15人,
微信人数所占百分比为,
补全图形如图:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
【点睛】
本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
20、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
【详解】
解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
∴,解得,
此抛物线所对应的函数表达式y=-x2+2x+1;
(2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
∴C(0,1).
设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
,解得,
即BC的函数解析式为y=-x+1.
由P在BC上,F在抛物线上,得
P(m,-m+1),F(m,-m2+2m+1).
PF=-m2+2m+1-(-m+1)=-m2+1m.
(1)如图
,
∵此抛物线所对应的函数表达式y=-x2+2x+1,
∴D(1,4).
∵线段BC与抛物线的对称轴交于点E,
当x=1时,y=-x+1=2,
∴E(1,2),
∴DE=4-2=2.
由四边形PEDF为平行四边形,得
PF=DE,即-m2+1m=2,
解得m1=1,m2=2.
当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
当m=2时,四边形PEDF为平行四边形.
考点:二次函数综合题.
21、(1)40;(2)54,补图见解析;(3)330;(4).
【解析】
(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;
(2),由自主学习的时间是0.5小时的人数为40×35%=14;
(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;
(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,
故答案为40;
(2),故答案为54;
自主学习的时间是0.5小时的人数为40×35%=14;
补充图形如图:
(3)600×=330;
故答案为330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种可能,
∴P(A)=.
22、.
【解析】
首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.
【详解】
解:∠AED=∠ACB.
理由:如图,分别标记∠1,∠2,∠3,∠1.
∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(内错角相等,两直线平行).
∴∠3=∠ADE(两直线平行,内错角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换).
∴DE∥BC(同位角相等,两直线平行).
∴∠AED=∠ACB(两直线平行,同位角相等).
【点睛】
本题重点考查平行线的性质和判定,难度适中.
23、(1)无解;(1)﹣1<x≤1.
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
(1)去分母得:1﹣x+1=﹣3x+6,
解得:x=1,
经检验x=1是增根,分式方程无解;
(1),
由①得:x>﹣1,
由②得:x≤1,
则不等式组的解集为﹣1<x≤1.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
24、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
【解析】
(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
(2)根据图形得出点的坐标;
(3)根据弧长的计算公式求出答案.
【详解】
解:(1)△A1B1C如图所示.
(2)A1(0,6).
(3)
.
【点睛】
本题考查了旋转作图和弧长的计算.
25、(1)120,30%;(2)作图见解析;(3)1.
【解析】
试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
试题解析:(1) 12÷15%=120人;36÷120=30%;
(2)120×45%=54人,补全统计图如下:
(3)1800×=1人.
考点:条形统计图;扇形统计图;用样本估计总体.
26、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
【解析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
【详解】
解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
∵点A位于点B的左侧,
∴A(﹣1,0),
∵直线y=x+m经过点A,
∴﹣1+m=0,
解得,m=1,
∴点D的坐标为(0,1),
∴AD==1;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,
y=x1+bx+1=(x+)1+1﹣,
则点C′的坐标为(﹣,1﹣),
∵CC′平行于直线AD,且经过C(0,﹣4),
∴直线CC′的解析式为:y=x﹣4,
∴1﹣=﹣﹣4,
解得,b1=﹣4,b1=6,
∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
【点睛】
本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
27、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
2023年广西贺州市昭平县中考数学二模试卷(含解析): 这是一份2023年广西贺州市昭平县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西贺州市昭平县中考数学三模试卷(含解析): 这是一份2023年广西贺州市昭平县中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西贺州市昭平县2021-2022学年中考数学全真模拟试题含解析: 这是一份广西贺州市昭平县2021-2022学年中考数学全真模拟试题含解析,共25页。试卷主要包含了下列实数中是无理数的是等内容,欢迎下载使用。