|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广东省深圳市宝安中学中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022届广东省深圳市宝安中学中考数学最后一模试卷含解析01
    2022届广东省深圳市宝安中学中考数学最后一模试卷含解析02
    2022届广东省深圳市宝安中学中考数学最后一模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省深圳市宝安中学中考数学最后一模试卷含解析

    展开
    这是一份2022届广东省深圳市宝安中学中考数学最后一模试卷含解析,共23页。试卷主要包含了如图,将函数y=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    2.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为(  )
    A.m> B.m C.m= D.m=
    3.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为(  )
    A. B. C. D.
    4.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(  )

    A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
    C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
    6.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
    劳动时间(小时)
    3
    3.5
    4
    4.5
    人  数
    1
    1
    3
    2
    A.中位数是4,众数是4 B.中位数是3.5,众数是4
    C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
    7.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )

    A.8 B.10 C.13 D.14
    8.下列关于x的方程一定有实数解的是( )
    A. B.
    C. D.
    9.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )

    A. B. C. D.
    10.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为(  )
    A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.

    12.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    13.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.

    14.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为
      ▲  辆.
    15.27的立方根为 .
    16.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.

    18.(8分)如图,已知在中,,是的平分线.

    (1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
    (2)判断直线与的位置关系,并说明理由.
    19.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
    请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
    20.(8分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
    下面是小东的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:

    0

    1

    2

    3

    3





    6
    说明:补全表格时相关数据保留一位小数
    建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.

    21.(8分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.

    22.(10分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).
    (1)t为何值时,△APQ与△AOB相似?
    (2)当 t为何值时,△APQ的面积为8cm2?

    23.(12分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
    (1)求圆O的半径;
    (2)如果AE=6,求EF的长.

    24. 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
    2、C
    【解析】
    试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
    ∴△=32-4×2m=9-8m=0,
    解得:m=.
    故选C.
    3、B
    【解析】
    匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.
    【详解】
    ∵甲、乙两人分别以4m/s和5m/s的速度,
    ∴两人的相对速度为1m/s,
    设乙的奔跑时间为t(s),所需时间为20s,
    两人距离20s×1m/s=20m,
    故选B.
    【点睛】
    此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.
    4、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    5、D
    【解析】
    ∵函数的图象过点A(1,m),B(4,n),
    ∴m==,n==3,
    ∴A(1,),B(4,3),
    过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
    ∴AC=4﹣1=3,
    ∵曲线段AB扫过的面积为9(图中的阴影部分),
    ∴AC•AA′=3AA′=9,
    ∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
    ∴新图象的函数表达式是.
    故选D.

    6、A
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    这组数据中4出现的次数最多,众数为4,
    ∵共有7个人,
    ∴第4个人的劳动时间为中位数,
    所以中位数为4,
    故选A.
    【点睛】
    本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    7、C
    【解析】
    根据三角形的面积公式以及切线长定理即可求出答案.
    【详解】
    连接PE、PF、PG,AP,
    由题意可知:∠PEC=∠PFA=PGA=90°,
    ∴S△PBC=BC•PE=×4×2=4,
    ∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
    ∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
    ∴由切线长定理可知:S△APG=S四边形AFPG=,
    ∴=×AG•PG,
    ∴AG=,
    由切线长定理可知:CE=CF,BE=BG,
    ∴△ABC的周长为AC+AB+CE+BE
    =AC+AB+CF+BG
    =AF+AG
    =2AG
    =13,
    故选C.

    【点睛】
    本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
    8、A
    【解析】
    根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
    【详解】
    A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
    B.ax=3中当a=0时,方程无解,不符合题意;
    C.由可解得不等式组无解,不符合题意;
    D.有增根x=1,此方程无解,不符合题意;
    故选A.
    【点睛】
    本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
    9、B
    【解析】
    连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.
    【详解】
    连接BF,由折叠可知AE垂直平分BF,

    ∵BC=6,点E为BC的中点,
    ∴BE=3,
    又∵AB=4,
    ∴AE==5,
    ∵,
    ∴,
    ∴BH=,则BF= ,
    ∵FE=BE=EC,
    ∴∠BFC=90°,
    ∴CF== .
    故选B.
    【点睛】
    本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
    10、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000637的小数点向右移动6位得到6.37
    所以0.00000637用科学记数法表示为6.37×10﹣6,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1-1.
    【解析】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
    【详解】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.

    ∵AB=AC=2,∠BAC=120°,
    ∴∠ACB=∠B=∠ACF=10°,
    ∴∠ECG=60°.
    ∵CF=BD=2CE,
    ∴CG=CE,
    ∴△CEG为等边三角形,
    ∴EG=CG=FG,
    ∴∠EFG=∠FEG=∠CGE=10°,
    ∴△CEF为直角三角形.
    ∵∠BAC=120°,∠DAE=60°,
    ∴∠BAD+∠CAE=60°,
    ∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
    在△ADE和△AFE中,

    ∴△ADE≌△AFE(SAS),
    ∴DE=FE.
    设EC=x,则BD=CF=2x,DE=FE=6-1x,
    在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
    EF==x,
    ∴6-1x=x,
    x=1-,
    ∴DE=x=1-1.
    故答案为:1-1.
    【点睛】
    本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
    12、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
    13、90
    【解析】
    【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.
    【详解】甲车先行40分钟(),所行路程为30千米,
    因此甲车的速度为(千米/时),
    设乙车的初始速度为V乙,则有

    解得:(千米/时),
    因此乙车故障后速度为:60-10=50(千米/时),
    设乙车出故障前走了t1小时,修好后走了t2小时,则有
    ,解得:,
    45×2=90(千米),
    故答案为90.
    【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.
    14、2.85×2.
    【解析】
    根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).
    【详解】
    解:28500000一共8位,从而28500000=2.85×2.
    15、1
    【解析】
    找到立方等于27的数即可.
    解:∵11=27,
    ∴27的立方根是1,
    故答案为1.
    考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
    16、
    【解析】
    先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
    【详解】
    ∵⊙O的直径BC=,
    ∴AB=BC=1,
    设圆锥的底面圆的半径为r,
    则2πr=,解得r=,
    即圆锥的底面圆的半径为米故答案为.

    三、解答题(共8题,共72分)
    17、答案见解析
    【解析】
    试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
    试题解析:连接BD,
    ∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
    ∴MN∥BD,MN= BD,
    ∵ ,
    ∴ .
    18、(1)见解析;(2)与相切,理由见解析.
    【解析】
    (1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
    (2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
    【详解】
    (1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
    ②作直线,与相交于点,
    ③以为圆心,为半径作圆,如图即为所作;

    (2)与相切,理由如下:
    连接OD,
    为半径,

    是等腰三角形,

    平分,






    为半径,
    与相切.
    【点睛】
    本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
    19、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
    【解析】
    试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
    (2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
    (3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
    试题解析:解:(1)AF=BE,AF⊥BE.
    (2)结论成立.

    证明:∵四边形ABCD是正方形,
    ∴BA="AD" =DC,∠BAD =∠ADC = 90°.
    在△EAD和△FDC中,

    ∴△EAD≌△FDC.
    ∴∠EAD=∠FDC.
    ∴∠EAD+∠DAB=∠FDC+∠CDA,
    即∠BAE=∠ADF.
    在△BAE和△ADF中,

    ∴△BAE≌△ADF.
    ∴BE = AF,∠ABE=∠DAF.
    ∵∠DAF +∠BAF=90°,
    ∴∠ABE +∠BAF=90°,
    ∴AF⊥BE.
    (3)结论都能成立.
    考点:正方形,等边三角形,三角形全等
    20、(1)(2)详见解析;(3).
    【解析】
    (1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
    【详解】
    经过测量,时,y值为
    根据题意,画出函数图象如下图:

    根据图象,可以发现,y的取值范围为:,

    故答案为.
    【点睛】
    本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
    21、证明见解析.
    【解析】
    不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.
    【详解】
    ∵AB是⊙O直径,
    ∴AD⊥BC,
    又BD=CD,
    ∴AB=AC,
    ∴∠B=∠C,
    又∠ADB=∠DEC=90°,
    ∴△BDA∽△CED.
    【点睛】
    本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.
    22、(1)t=秒;(1)t=5﹣(s).
    【解析】
    (1)利用勾股定理列式求出 AB,再表示出 AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;
    (1)过点 P 作 PC⊥OA 于 C,利用∠OAB 的正弦求出 PC,然后根据三角形的面积公式列出方程求解即可.
    【详解】
    解:(1)∵点 A(0,6),B(8,0),
    ∴AO=6,BO=8,
    ∴AB= ==10,
    ∵点P的速度是每秒1个单位,点 Q 的速度是每秒1个单位,
    ∴AQ=t,AP=10﹣t,
    ①∠APQ是直角时,△APQ∽△AOB,
    ∴,
    即,
    解得 t=>6,舍去;
    ②∠AQP 是直角时,△AQP∽△AOB,
    ∴,
    即,
    解得 t=,
    综上所述,t=秒时,△APQ 与△AOB相似;

    (1)如图,过点 P 作 PC⊥OA 于点C,
    则 PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),
    ∴△APQ的面积=×t×(10﹣t)=8,
    整理,得:t1﹣10t+10=0,
    解得:t=5+>6(舍去),或 t=5﹣,
    故当 t=5﹣(s)时,△APQ的面积为 8cm1.
    【点睛】
    本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.
    23、 (1) 圆的半径为4.5;(2) EF=.
    【解析】
    (1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
    (2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
    【详解】
    (1)连接OD,
    ∵直径AB⊥弦CD,CD=4,
    ∴DH=CH=CD=2,
    在Rt△ODH中,AH=5,
    设圆O的半径为r,
    根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
    解得:r=4.5,
    则圆的半径为4.5;
    (2)过O作OG⊥AE于G,
    ∴AG=AE=×6=3,
    ∵∠A=∠A,∠AGO=∠AHF,
    ∴△AGO∽△AHF,
    ∴,
    ∴,
    ∴AF=,
    ∴EF=AF﹣AE=﹣6=.

    【点睛】
    本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
    24、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
    【解析】
    (1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
    (2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
    【详解】
    (1)证明:过F作FH⊥BE于H点,

    在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
    所以四边形BHFC为矩形,
    ∴CF=BH,
    ∵BF=EF,FH⊥BE,
    ∴H为BE中点,
    ∴BE=2BH,
    ∴BE=2CF;
    (2)四边形BFGN是菱形.
    证明:
    ∵将线段EF绕点F顺时针旋转90°得FG,
    ∴EF=GF,∠GFE=90°,
    ∴∠EFH+∠BFH+∠GFB=90°
    ∵BN∥FG,
    ∴∠NBF+∠GFB=180°,
    ∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
    ∵∠ABC=90°,
    ∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
    由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
    ∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
    由BHFC是矩形可得HF=BC,
    ∵BC=AB,∴HF=AB,
    在△ABN和△HFE中,,
    ∴△ABN≌△HFE,
    ∴NB=EF,
    ∵EF=GF,
    ∴NB=GF,
    又∵NB∥GF,
    ∴NBFG是平行四边形,
    ∵EF=BF,∴NB=BF,
    ∴平行四边NBFG是菱形.
    点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.

    相关试卷

    2023年广东省深圳市宝安区海湾中学中考数学三模试卷(含解析): 这是一份2023年广东省深圳市宝安区海湾中学中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省深圳市宝安区海旺中学中考数学三模试卷(含解析): 这是一份2023年广东省深圳市宝安区海旺中学中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省深圳市宝安区桃源中澳中学中考数学三模试卷(含解析 ): 这是一份2023年广东省深圳市宝安区桃源中澳中学中考数学三模试卷(含解析 ),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map