2022届广西防城岗市防城区中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4 B.5 C.6 D.7
2.计算﹣的结果为( )
A. B. C. D.
3.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
4.计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是( )
A.5 B.﹣2 C.2 D.﹣1
5.﹣18的倒数是( )
A.18 B.﹣18 C.- D.
6.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )
A.40 B.46 C.48 D.50
7.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
8.下列关于x的方程中一定没有实数根的是( )
A. B. C. D.
9.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()
A. B. C. D.
10.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )
A. B.2 C. D.
11.函数的自变量x的取值范围是( )
A.x>1 B.x<1 C.x≤1 D.x≥1
12.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.三角形的每条边的长都是方程的根,则三角形的周长是 .
14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).
15.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
16.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
17.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2﹣OA2=__.
18.二次函数y=x2-2x+1的对称轴方程是x=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
20.(6分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
画出旋转之后的△AB′C′;求线段AC旋转过程中扫过的扇形的面积.
21.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
22.(8分)已知,抛物线(为常数).
(1)抛物线的顶点坐标为( , )(用含的代数式表示);
(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
23.(8分)解方程.
24.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
25.(10分)如下表所示,有A、B两组数:
第1个数
第2个数
第3个数
第4个数
……
第9个数
……
第n个数
A组
﹣6
﹣5
﹣2
……
58
……
n2﹣2n﹣5
B组
1
4
7
10
……
25
……
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
26.(12分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
27.(12分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
2、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
3、D
【解析】
①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
所以﹣=﹣1,可得b=2a,
当x=﹣3时,y<0,
即9a﹣3b+c<0,
9a﹣6a+c<0,
3a+c<0,
∵a<0,
∴4a+c<0,
所以①选项结论正确;
②∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm<a﹣b,
m(am+b)+b<a,
所以此选项结论不正确;
③ax2+(b﹣1)x+c=0,
△=(b﹣1)2﹣4ac,
∵a<0,c>0,
∴ac<0,
∴﹣4ac>0,
∵(b﹣1)2≥0,
∴△>0,
∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
④由图象得:当x>﹣1时,y随x的增大而减小,
∵当k为常数时,0≤k2≤k2+1,
∴当x=k2的值大于x=k2+1的函数值,
即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
ak4+bk2>a(k2+1)2+b(k2+1),
所以此选项结论不正确;
所以正确结论的个数是1个,
故选D.
4、A
【解析】
试题分析:原式=1-(-3)+=1+3+1=5,故选A.
5、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
6、C
【解析】
∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
∴∠ABD=∠ACF,
又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
∵BF=AB+AF=12,∴3AF=12,∴AF=4,
∴AB=AC=2AF=8,
∴S△FBC= ×BF×AC=×12×8=48,故选C.
7、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
8、B
【解析】
根据根的判别式的概念,求出△的正负即可解题.
【详解】
解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
B. , △=36-144=-1080,∴原方程没有实数根,
C. , , △=10,∴原方程有两个不相等的实数根,
D. , △=m2+80,∴原方程有两个不相等的实数根,
故选B.
【点睛】
本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
9、A
【解析】
从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.
10、C
【解析】
过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
【详解】
过O作OC⊥AB,交圆O于点D,连接OA,
由折叠得到CD=OC=OD=1cm,
在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
即AC2+1=4,
解得:AC=cm,
则AB=2AC=2cm.
故选C.
【点睛】
此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
11、C
【解析】
试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
试题解析:根据题意得:1-x≥0,
解得:x≤1.
故选C.
考点:函数自变量的取值范围.
12、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6或2或12
【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
【详解】
由方程,得=2或1.
当三角形的三边是2,2,2时,则周长是6;
当三角形的三边是1,1,1时,则周长是12;
当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
综上所述此三角形的周长是6或12或2.
14、.
【解析】
用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
【详解】
由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
故答案为:28%.
【点睛】
本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
15、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
16、18π
【解析】解:设圆锥的半径为 ,母线长为 .则
解得
17、1
【解析】
解:∵直线y=x+b与双曲线 (x>0)交于点P,设P点的坐标(x,y),
∴x﹣y=﹣b,xy=8,
而直线y=x+b与x轴交于A点,
∴OA=b.
又∵OP2=x2+y2,OA2=b2,
∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.
故答案为1.
18、1
【解析】
利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
【详解】
∵-=-=1,
∴x=1.
故答案为:1
【点睛】
本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)72°,见解析;(2)7280;(3).
【解析】
(1)根据题意列式计算,补全条形统计图即可;
(2)根据题意列式计算即可;
(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
【详解】
(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
月季的株数为2000×90%-380-422-270=728(株),
补全条形统计图如图所示:
(2)月季的成活率为
所以月季成活株数为8000×91%=7280(株).
故答案为:7280.
(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:
所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
∴P(恰好选到成活率较高的两类花苗)
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
20、.(1)见解析(2)
【解析】
(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可.
(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.
【详解】
解:(1)△AB′C′如图所示:
(2)由图可知,AC=2,
∴线段AC旋转过程中扫过的扇形的面积.
21、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
22、(1);(2)图象见解析,或;(3)
【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
【详解】
解:(1),
抛物线的顶点的坐标为.
故答案为:
(2)将代入抛物线的解析式得:
解得:,
抛物线的解析式为.
抛物线的大致图象如图所示:
将代入得:
,
解得:或
抛物线与反比例函数图象的交点坐标为或.
将代入得:,
.
将代入得:,
.
综上所述,反比例函数的表达式为或.
(3)设点的坐标为,
则点的坐标为,
的坐标为.
的长随的增大而减小.
矩形在其对称轴的左侧,抛物线的对称轴为,
当时,的长有最小值,的最小值.
的长度不变,
当最小时,有最小值.
的最小值
故答案为:.
【点睛】
本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
23、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
【点睛】
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
24、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
25、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
【解析】
(1)将n=4代入n2-2n-5中即可求解;
(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
【详解】
解:(1))∵A组第n个数为n2-2n-5,
∴A组第4个数是42-2×4-5=3,
故答案为3;
(2)第n个数是.
理由如下:
∵第1个数为1,可写成3×1-2;
第2个数为4,可写成3×2-2;
第3个数为7,可写成3×3-2;
第4个数为10,可写成3×4-2;
……
第9个数为25,可写成3×9-2;
∴第n个数为3n-2;
故答案为3n-2;
(3)不存在同一位置上存在两个数据相等;
由题意得,,
解之得,
由于是正整数,所以不存在列上两个数相等.
【点睛】
本题考查了数字的变化类,正确的找出规律是解题的关键.
26、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
27、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.
【解析】
(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;
(2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.
【详解】
(1)∵点A是直线与抛物线的交点,且横坐标为-2,
,A点的坐标为(-2,1),
设直线的函数关系式为y=kx+b,
将(0,4),(-2,1)代入得
解得
∴y=x+4
∵直线与抛物线相交,
解得:x=-2或x=8,
当x=8时,y=16,
∴点B的坐标为(8,16);
(2)存在.
∵由A(-2,1),B(8,16)可求得AB2==325
.设点C(m,0),
同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m-8)2+162=m2-16m+320,
①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
∴点C的坐标为(-,0),(0,0),(6,0),(32,0)
(3)设M(a,a2),
则MN=,
又∵点P与点M纵坐标相同,
∴x+4=a2,
∴x= ,
∴点P的横坐标为,
∴MP=a-,
∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+1,
∵-2≤6≤8,
∴当a=6时,取最大值1,
∴当M的横坐标为6时,MN+3PM的长度的最大值是1
2022-2023学年广西防城岗市防城区七下数学期末调研模拟试题含答案: 这是一份2022-2023学年广西防城岗市防城区七下数学期末调研模拟试题含答案,共6页。试卷主要包含了一组数据,一次函数的图象不经过,一元二次方程 2x=3的解是等内容,欢迎下载使用。
2023年广西防城港市防城区中考数学二模试卷(含解析): 这是一份2023年广西防城港市防城区中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
广西防城岗市防城区2021-2022学年中考五模数学试题含解析: 这是一份广西防城岗市防城区2021-2022学年中考五模数学试题含解析,共18页。试卷主要包含了3的相反数是等内容,欢迎下载使用。