2022届贵州省安顺黄腊初级中学中考数学适应性模拟试题含解析
展开
这是一份2022届贵州省安顺黄腊初级中学中考数学适应性模拟试题含解析,共28页。试卷主要包含了若,则的值为,﹣18的倒数是,的相反数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形 B.菱形 C.平行四边形 D.正五边形
2.估计的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
3.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
A.60° B.50° C.40° D.30°
4.若,则的值为( )
A.12 B.2 C.3 D.0
5.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
6.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )
A.1 B.2 C.3 D.4
7.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
8.﹣18的倒数是( )
A.18 B.﹣18 C.- D.
9.的相反数是 ( )
A.6 B.-6 C. D.
10.3点40分,时钟的时针与分针的夹角为( )
A.140° B.130° C.120° D.110°
11.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )
A.75° B.60° C.45° D.30°
12.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是( )
A.8 B.﹣8 C.﹣12 D.12
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
14.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.
15.关于的一元二次方程有两个相等的实数根,则的值等于_____.
16.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示
17.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.
18.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),
第一次变化:从左边小桶中拿出两个小球放入中间小桶中;
第二次变化:从右边小桶中拿出一个小球放入中间小桶中;
第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.
(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;
(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);
(3)求第三次变化后中间小桶中有多少个小球?
20.(6分)如图,已知一次函数y=x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.
填空:n的值为 ,k的值为 ; 以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标; 考察反比函数的图象,当时,请直接写出自变量的取值范围.
21.(6分)问题提出
(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
问题探究
(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
问题解决
(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.
22.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
(1)求抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
23.(8分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.
24.(10分)综合与实践﹣猜想、证明与拓广
问题情境:
数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
猜想证明
(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;
(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
请你参考同学们的思路,完成证明;
(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
联系拓广:
(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).
25.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
26.(12分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
27.(12分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:
可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;
画出绕点B逆时针旋转的图形;
在中,点C所形成的路径的长度为______.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;
B、菱形是轴对称图形,也是中心对称图形,故此选项正确;
C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.
2、D
【解析】
寻找小于26的最大平方数和大于26的最小平方数即可.
【详解】
解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
,故选择D.
【点睛】
本题考查了二次根式的相关定义.
3、C
【解析】
先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=180°﹣100°=80°,a∥c,
∴∠α=180°﹣80°﹣60°=40°.
故选:C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
4、A
【解析】
先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
【详解】
∵,
∴,
∴.
故选:A.
【点睛】
本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
5、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
6、C
【解析】
分析:
过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.
详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;
(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;
(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;
综上所述,符合要求的半径为2的圆共有3个.
故选C.
点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.
7、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
8、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
9、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
10、B
【解析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:3点40分时针与分针相距4+=份,
30°×=130,
故选B.
【点睛】
本题考查了钟面角,确定时针与分针相距的份数是解题关键.
11、C
【解析】
根据直角三角形两锐角互余即可解决问题.
【详解】
解:∵直角三角形两锐角互余,
∴另一个锐角的度数=90°﹣45°=45°,
故选C.
【点睛】
本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
12、D
【解析】
根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
【详解】
∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
故选D.
【点睛】
本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
14、先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
【解析】
根据旋转的性质,平移的性质即可得到由△DEF得到△ABC的过程.
【详解】
由题可得,由△DEF得到△ABC的过程为:
先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.(答案不唯一)
故答案为:先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.
【点睛】
本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
15、
【解析】
分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,
故答案为-3.
点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△
相关试卷
这是一份2023-2024学年贵州省安顺黄腊初级中学九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了方程2x,下列运算正确的是,如图,若点P在反比例函数y=等内容,欢迎下载使用。
这是一份2023-2024学年贵州省安顺黄腊初级中学九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中为中心对称图形的是,如图,点P等内容,欢迎下载使用。
这是一份贵州省安顺黄腊初级中学2023-2024学年数学八上期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,无理数的是等内容,欢迎下载使用。