搜索
    上传资料 赚现金
    英语朗读宝

    2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析

    2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析第1页
    2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析第2页
    2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份2022届贵州省思南县联考初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,方程x2+2x﹣3=0的解是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是(  )
    A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
    B.当k>0时,y随x的增大而减小
    C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
    D.反比例函数的图象关于直线y=﹣x成轴对称
    2.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
    ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
    其中正确的是( )

    A.①②③ B.①③④ C.①③⑤ D.②④⑤
    3.计算 的结果是( )
    A.a2 B.-a2 C.a4 D.-a4
    4.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=(  )

    A.35° B.60° C.70° D.70°或120°
    5.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    6.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    7.方程x2+2x﹣3=0的解是(  )
    A.x1=1,x2=3 B.x1=1,x2=﹣3
    C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
    8.已知x2+mx+25是完全平方式,则m的值为(  )
    A.10 B.±10 C.20 D.±20
    9.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    10.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.化简:_____________.
    12.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.

    13.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.
    14.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
    15.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______

    16.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.

    三、解答题(共8题,共72分)
    17.(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
    方案一:买一件甲种商品就赠送一件乙种商品;
    方案二:按购买金额打八折付款.
    某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
    (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
    (2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
    18.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
    19.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
    售价x/(元/千克)
    50
    60
    70
    销售量y/千克
    100
    80
    60
    (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
    20.(8分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.

    (1)若a=1,求反比例函数的解析式及b的值;
    (2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
    (3)若a﹣b=4,求一次函数的函数解析式.
    21.(8分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;
    看法
    频数
    频率
    赞成
    5

    无所谓

    0.1
    反对
    40
    0.8
    (1)本次调查共调查了   人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.

    22.(10分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
    收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):
    30 60 81 50 40 110 130 146 90 100
    60 81 120 140 70 81 10 20 100 81
    整理数据 按如下分段整理样本数据并补全表格:
    课外阅读时间(min)




    等级
    D
    C
    B
    A
    人数
    3

    8

    分析数据 补全下列表格中的统计量:
    平均数
    中位数
    众数
    80


    得出结论
    (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ;
    (2)如果该校现有学生400人,估计等级为“”的学生有多少名?
    (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?
    23.(12分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
    如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
    24.已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
    (1)求∠EAD的余切值;
    (2)求的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分析:根据反比例函数的性质一一判断即可;
    详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
    B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
    C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
    D.正确,本选项符合题意.
    故选D.
    点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
    2、C
    【解析】
    试题解析:∵抛物线的顶点坐标A(1,3),
    ∴抛物线的对称轴为直线x=-=1,
    ∴2a+b=0,所以①正确;
    ∵抛物线开口向下,
    ∴a<0,
    ∴b=-2a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以②错误;
    ∵抛物线的顶点坐标A(1,3),
    ∴x=1时,二次函数有最大值,
    ∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
    ∵抛物线与x轴的一个交点为(4,0)
    而抛物线的对称轴为直线x=1,
    ∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
    ∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
    ∴当1<x<4时,y2<y1,所以⑤正确.
    故选C.
    考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
    3、D
    【解析】
    直接利用同底数幂的乘法运算法则计算得出答案.
    【详解】
    解:,
    故选D.
    【点睛】
    此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.
    4、D
    【解析】
    ①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
    【详解】

    ①当点B落在AB边上时,
    ∵,
    ∴,
    ∴,
    ②当点B落在AC上时,
    在中,
    ∵∠C=90°, ,
    ∴,
    ∴,
    故选D.
    【点睛】
    本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.
    5、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.
    6、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    7、B
    【解析】
    本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
    【详解】
    x2+2x-3=0,
    即(x+3)(x-1)=0,
    ∴x1=1,x2=﹣3
    故选:B.
    【点睛】
    本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
    8、B
    【解析】
    根据完全平方式的特点求解:a2±2ab+b2.
    【详解】
    ∵x2+mx+25是完全平方式,
    ∴m=±10,
    故选B.
    【点睛】
    本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
    9、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    10、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据分式的运算法则即可求解.
    【详解】
    原式=.
    故答案为:.
    【点睛】
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    12、3
    【解析】
    【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.
    【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,
    ∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,
    ∴EF=BC=3,AE=AB,
    ∵DE=EF,
    ∴AD=DE=3,
    ∴AE==3,
    ∴AB=3,
    故答案为3.
    【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.
    13、60%
    【解析】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.
    【详解】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,
    依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,
    解得:x=0.4y,
    ∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.
    故答案为60%.
    【点睛】
    本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
    14、.
    【解析】
    试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
    【点睛】
    本题考查概率公式,掌握图形特点是解题关键,难度不大.
    15、5或
    【解析】
    分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
    详解:∵四边形ABCD是菱形,
    ∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,

    ∴△ABD是等边三角形,
    ∴BD=AB=6,



    ∵点E在AC上,
    ∴当E在点O左边时
    当点E在点O右边时
    ∴或;
    故答案为或.
    点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
    16、1
    【解析】
    根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.
    【详解】
    解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,
    ∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,
    ∴CO⊥AB,∠CAB=10°,
    则∠AOD+∠COE=90°,
    ∵∠DAO+∠AOD=90°,
    ∴∠DAO=∠COE,
    又∵∠ADO=∠CEO=90°,
    ∴△AOD∽△OCE,
    ∴ =tan60°= ,
    ∴= =1,
    ∵点A是双曲线y=- 在第二象限分支上的一个动点,
    ∴S△AOD=×|xy|= ,
    ∴S△EOC= ,即×OE×CE=,
    ∴k=OE×CE=1,
    故答案为1.

    【点睛】
    本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.

    三、解答题(共8题,共72分)
    17、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
    【解析】
    (1)根据方案即可列出函数关系式;
    (2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
    解:(1) 得:;
    得:;
    (2)
    ,
    因为w是m的一次函数,k=-4

    相关试卷

    贵州省施秉县2022年初中数学毕业考试模拟冲刺卷含解析:

    这是一份贵州省施秉县2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列实数中,为无理数的是,一元二次方程的根的情况是等内容,欢迎下载使用。

    贵州省桐梓县市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份贵州省桐梓县市级名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了﹣2018的绝对值是,下列运算正确的是等内容,欢迎下载使用。

    2022年山东省聊城冠县联考初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022年山东省聊城冠县联考初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map