终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届贵州省黔西南州重点中学中考联考数学试题含解析

    立即下载
    加入资料篮
    2022届贵州省黔西南州重点中学中考联考数学试题含解析第1页
    2022届贵州省黔西南州重点中学中考联考数学试题含解析第2页
    2022届贵州省黔西南州重点中学中考联考数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届贵州省黔西南州重点中学中考联考数学试题含解析

    展开

    这是一份2022届贵州省黔西南州重点中学中考联考数学试题含解析,共24页。试卷主要包含了下列计算正确的是,一个正比例函数的图象过点等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    2.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为(  )

    A. B. C. D.
    3.下列成语描述的事件为随机事件的是(  )
    A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
    4.﹣2的绝对值是( )
    A.2 B. C. D.
    5.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
    A. B.
    C. D.
    6.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    7.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )

    A. B. C. D.
    8.如果关于x的方程x2﹣x+1=0有实数根,那么k的取值范围是(  )
    A.k>0 B.k≥0 C.k>4 D.k≥4
    9.下列计算正确的是(  )
    A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
    10.一个正比例函数的图象过点(2,﹣3),它的表达式为(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.当时,直线与抛物线有交点,则a的取值范围是_______.
    12.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)

    13.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.

    14.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰1.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.
    15.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
    16.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.

    三、解答题(共8题,共72分)
    17.(8分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.
    成绩/分
    120﹣111
    110﹣101
    100﹣91
    90以下
    成绩等级
    A
    B
    C
    D
    请根据以上信息解答下列问题:
    (1)这次统计共抽取了   名学生的数学成绩,补全频数分布直方图;
    (2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?
    (3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?

    18.(8分)(1)计算:sin45°
    (2)解不等式组:
    19.(8分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:

    (1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
    (2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
    (3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
    20.(8分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    21.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).

    (1)当时,
    ①在图1中依题意画出图形,并求(用含的式子表示);
    ②探究线段,,之间的数量关系,并加以证明;
    (2)当时,直接写出线段,,之间的数量关系.
    22.(10分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
    (1)若∠G=48°,求∠ACB的度数;
    (1)若AB=AE,求证:∠BAD=∠COF;
    (3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.

    23.(12分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.

    24.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    2、C
    【解析】
    试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
    故选C
    3、B
    【解析】试题解析:水涨船高是必然事件,A不正确;
    守株待兔是随机事件,B正确;
    水中捞月是不可能事件,C不正确
    缘木求鱼是不可能事件,D不正确;
    故选B.
    考点:随机事件.
    4、A
    【解析】
    分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
    5、C
    【解析】
    试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
    考点:由实际问题抽象出分式方程.
    6、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    7、C
    【解析】
    △AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
    解:(1)当0<x≤1时,如图,
    在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
    ∵MN⊥AC,
    ∴MN∥BD;
    ∴△AMN∽△ABD,
    ∴=,
    即,=,MN=x;
    ∴y=AP×MN=x2(0<x≤1),
    ∵>0,
    ∴函数图象开口向上;
    (2)当1<x<2,如图,
    同理证得,△CDB∽△CNM,=,
    即=,MN=2-x;
    ∴y=
    AP×MN=x×(2-x),
    y=-x2+x;
    ∵-<0,
    ∴函数图象开口向下;
    综上答案C的图象大致符合.
    故选C.
    本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.
    8、D
    【解析】
    由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.
    【详解】
    ∵关于x的方程x2-x+1=0有实数根,
    ∴,
    解得:k≥1.
    故选D.
    【点睛】
    本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    9、C
    【解析】
    根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
    【详解】
    解:A、2m与3n不是同类项,不能合并,故错误;
    B、m2•m3=m5,故错误;
    C、正确;
    D、(-m)3=-m3,故错误;
    故选:C.
    【点睛】
    本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
    10、A
    【解析】
    利用待定系数法即可求解.
    【详解】
    设函数的解析式是y=kx,
    根据题意得:2k=﹣3,解得:k=.
    ∴ 函数的解析式是:.
    故选A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    直线与抛物线有交点,则可化为一元二次方程组利用根的判别式进行计算.
    【详解】
    解:法一:与抛物线有交点
    则有,整理得

    解得
    ,对称轴


    法二:由题意可知,
    ∵抛物线的 顶点为,而
    ∴抛物线y的取值为
    ,则直线y与x轴平行,
    ∴要使直线与抛物线有交点,
    ∴抛物线y的取值为,即为a的取值范围,

    故答案为:
    【点睛】
    考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.
    12、①②③
    【解析】
    (1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
    【详解】
    (1)∵四边形ABCD是菱形,BD=AB,
    ∴AB=BD=BC=DC=DA,
    ∴△ABD和△CBD都是等边三角形,
    ∴∠A=∠BDF=60°,
    又∵AE=DF,
    ∴△AED≌△DFB,即结论①正确;
    (2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
    ∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
    ∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠CDN=∠CBM,
    如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
    ∴∠CDN=∠CBM=90°,
    又∵CB=CD,
    ∴△CBM≌△CDN,
    ∴S四边形BCDG=S四边形CMGN=2S△CGN,
    ∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
    ∴GN=CG,CN=CG,
    ∴S△CGN=CG2,
    ∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;

    (3)如下图,过点F作FK∥AB交DE于点K,
    ∴△DFK∽△DAE,△GFK∽△GBE,
    ∴,,
    ∵AF=2DF,
    ∴,
    ∵AB=AD,AE=DF,AF=2DF,
    ∴BE=2AE,
    ∴,
    ∴BG=6FG,即结论③成立.

    综上所述,本题中正确的结论是:
    故答案为①②③
    点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
    13、(-2,6)
    【解析】
    分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.
    详解:连接OB1,作B1H⊥OA于H,

    由题意得,OA=6,AB=OC-2,
    则tan∠BOA=,
    ∴∠BOA=30°,
    ∴∠OBA=60°,
    由旋转的性质可知,∠B1OB=∠BOA=30°,
    ∴∠B1OH=60°,
    在△AOB和△HB1O,

    ∴△AOB≌△HB1O,
    ∴B1H=OA=6,OH=AB=2,
    ∴点B1的坐标为(-2,6),
    故答案为(-2,6).
    点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.
    14、2
    【解析】
    分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.
    详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.

    点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    15、3.86×108
    【解析】
    根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
    3.86亿=386000000=3.86×108.
    故答案是:3.86×108.
    16、4.
    【解析】
    试题分析:连结BC,因为AB是⊙O的直径,所以∠ACB=90°,∠A+∠ABC=90°,又因为BD,CD分别是过⊙O上点B,C的切线,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.
    考点:4.圆周角定理;4.切线的性质;4.切线长定理.

    三、解答题(共8题,共72分)
    17、(1)1人;补图见解析;(2)10人;(3)610名.
    【解析】
    (1)用总人数乘以A所占的百分比,即可得到总人数;再用总人数乘以A等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D等级人数,据此可补全条形图;
    (2)用总人数乘以(A的百分比+B的百分比),即可解答;
    (3)先计算出提高后A,B所占的百分比,再乘以总人数,即可解答.
    【详解】
    解:(1)本次调查抽取的总人数为15÷=1(人),
    则A等级人数为1×=10(人),D等级人数为1﹣(10+15+5)=20(人),
    补全直方图如下:

    故答案为1.
    (2)估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有1000×=10(人);
    (3)∵A级学生数可提高40%,B级学生数可提高10%,
    ∴B级学生所占的百分比为:30%×(1+10%)=33%,A级学生所占的百分比为:20%×(1+40%)=28%,
    ∴1000×(33%+28%)=610(人),
    ∴估计经过训练后九年级数学成绩在B以上(含B级)的学生可达610名.
    【点睛】
    考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    18、(1);(2)﹣2<x≤1.
    【解析】
    (1)根据绝对值、特殊角的三角函数值可以解答本题;
    (2)根据解一元一次不等式组的方法可以解答本题.
    【详解】
    (1)sin45°
    =3-+×-5+×
    =3-+3-5+1
    =7--5;
    (2)(2)
    由不等式①,得
    x>-2,
    由不等式②,得
    x≤1,
    故原不等式组的解集是-2<x≤1.
    【点睛】
    本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
    19、(1)60人;(2)144°,补全图形见解析;(3)15万人.
    【解析】
    (1)用B景点人数除以其所占百分比可得;
    (2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;
    (3)用总人数乘以样本中D景点人数所占比例
    【详解】
    (1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;
    (2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,
    补全图形如下:

    (3)估计选择去景点D旅游的人数为90×=15(万人).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    20、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    21、(1)①;②;(2)
    【解析】
    (1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
    【详解】
    (1)当时,
    ①画出的图形如图1所示,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线
    ∴是的垂直平分线,
    ∵为线段上的点,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    ∴;

    ②;
    如图2,延长到点,使得,连接,作于点.
    ∵,点在上,
    ∴.
    ∵点在的延长线上,,
    ∴.
    ∴.
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    即为底角为的等腰三角形.
    ∴.
    ∴.

    (2)如图3,当时,
    在上取一点使,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线,
    ∵为线段上的点,
    ∴是的垂直平分线,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    ∴.
    ∴.

    【点睛】
    此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
    22、(1)48°(1)证明见解析(3)
    【解析】
    (1)连接CD,根据圆周角定理和垂直的定义可得结论;
    (1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
    (3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
    【详解】
    (1)连接CD,
    ∵AD是⊙O的直径,
    ∴∠ACD=90°,
    ∴∠ACB+∠BCD=90°,
    ∵AD⊥CG,
    ∴∠AFG=∠G+∠BAD=90°,
    ∵∠BAD=∠BCD,
    ∴∠ACB=∠G=48°;
    (1)∵AB=AE,
    ∴∠ABE=∠AEB,
    ∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
    由(1)得:∠G=∠ACB,
    ∴∠BCG=∠DAC,
    ∴,
    ∵AD是⊙O的直径,AD⊥PC,
    ∴,
    ∴,
    ∴∠BAD=1∠DAC,
    ∵∠COF=1∠DAC,
    ∴∠BAD=∠COF;
    (3)过O作OG⊥AB于G,设CF=x,
    ∵tan∠CAF== ,
    ∴AF=1x,
    ∵OC=OA,由(1)得:∠COF=∠OAG,
    ∵∠OFC=∠AGO=90°,
    ∴△COF≌△OAG,
    ∴OG=CF=x,AG=OF,
    设OF=a,则OA=OC=1x﹣a,
    Rt△COF中,CO1=CF1+OF1,
    ∴(1x﹣a)1=x1+a1,
    a=x,
    ∴OF=AG=x,
    ∵OA=OB,OG⊥AB,
    ∴AB=1AG=x,
    ∴.

    【点睛】
    圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
    23、证明见解析.
    【解析】
    连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
    【详解】
    证明:如图,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,


    ∴,则,
    ∴,
    ∴,即,
    在和中,
    ∵,
    ∴,

    ∵是的切线,则,
    ∴,
    ∴,则,
    ∴是的切线.

    【点睛】
    本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
    24、CE的长为(4+)米
    【解析】
    由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
    【详解】
    过点A作AH⊥CD,垂足为H,

    由题意可知四边形ABDH为矩形,∠CAH=30°,
    ∴AB=DH=1.5,BD=AH=6,
    在Rt△ACH中,tan∠CAH=,
    ∴CH=AH•tan∠CAH,
    ∴CH=AH•tan∠CAH=6tan30°=6×=2(米),
    ∵DH=1.5,
    ∴CD=2+1.5,
    在Rt△CDE中,
    ∵∠CED=60°,sin∠CED=,
    ∴CE==(4+)(米),
    答:拉线CE的长为(4+)米.
    考点:解直角三角形的应用-仰角俯角问题

    相关试卷

    2022年贵州省黔西南州中考数学真题(含解析):

    这是一份2022年贵州省黔西南州中考数学真题(含解析),共30页。

    2022年郑州市重点中学中考联考数学试题含解析:

    这是一份2022年郑州市重点中学中考联考数学试题含解析,共20页。试卷主要包含了如图所示的几何体的左视图是,某校八,如果将直线l1等内容,欢迎下载使用。

    2022年海南省重点中学中考联考数学试题含解析:

    这是一份2022年海南省重点中学中考联考数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,在数轴上表示不等式2,计算的值为,的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map