|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届河北省承德市承德县中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022届河北省承德市承德县中考数学仿真试卷含解析01
    2022届河北省承德市承德县中考数学仿真试卷含解析02
    2022届河北省承德市承德县中考数学仿真试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河北省承德市承德县中考数学仿真试卷含解析

    展开
    这是一份2022届河北省承德市承德县中考数学仿真试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,函数的自变量x的取值范围是,函数y=自变量x的取值范围是, 1分等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过(  )

    A.第一、二、三象限 B.第一、二、四象限
    C.第二、三、四象限 D.第一、三、四象限
    2.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为(  )

    A.12cm B.12cm C.24cm D.24cm
    3.下列各式中计算正确的是
    A. B. C. D.
    4.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )

    A.①④ B.①③ C.①②③ D.②③④
    5.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    6.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    7.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    8.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于

    A.90° B.180° C.210° D.270°
    9.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是  

    A. B. C. D.
    10.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是(  )

    A.π B. C.π D.π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
    12.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.

    13.一个多边形的内角和是,则它是______边形.
    14.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
    15.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.

    16.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    三、解答题(共8题,共72分)
    17.(8分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
    (1)当m=6时,求线段CD的长;
    (2)设圆心O1在直线上方,试用n的代数式表示m;
    (3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.

    18.(8分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.

    (1)求直线BC的解析式;
    (2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.
    19.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

    20.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.

    21.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
    22.(10分)已知关于x的方程x2﹣6mx+9m2﹣9=1.
    (1)求证:此方程有两个不相等的实数根;
    (2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
    23.(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
    24.观察下列各式:



    由此归纳出一般规律__________.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
    【详解】
    解:观察函数图象,可知:m>0,n>0,
    ∴一次函数y=mx+n的图象经过第一、二、三象限.
    故选A.
    【点睛】
    本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
    2、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.

    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    3、B
    【解析】
    根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
    【详解】
    A. ,故错误.
    B. ,正确.
    C. ,故错误.
    D. , 故错误.
    故选B.
    【点睛】
    考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
    4、C
    【解析】
    根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
    【详解】
    解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
    观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
    则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
    所有点中,只有点D到A距离为2个单位,故③正确;
    因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
    故选:C.
    【点睛】
    本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
    5、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.
    6、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.
    7、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    8、B
    【解析】
    试题分析:如图,如图,过点E作EF∥AB,

    ∵AB∥CD,∴EF∥AB∥CD,
    ∴∠1=∠4,∠3=∠5,
    ∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
    故选B
    9、B
    【解析】
    根据常见几何体的展开图即可得.
    【详解】
    由展开图可知第一个图形是②正方体的展开图,
    第2个图形是①圆柱体的展开图,
    第3个图形是③三棱柱的展开图,
    第4个图形是④四棱锥的展开图,
    故选B
    【点睛】
    本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
    10、C
    【解析】
    由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.
    【详解】
    ∵AB是⊙O的切线,
    ∴∠OAB=90°,
    ∵半径OA=2,OB交⊙O于C,∠B=30°,
    ∴∠AOB=60°,
    ∴劣弧ACˆ的长是:=,
    故选:C.
    【点睛】
    本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.
    故答案为1.
    点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
    12、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=3,
    ∴BD=2OB=6,
    ∴AD=.
    【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    13、六
    【解析】
    试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.
    考点:多边形内角与外角.
    14、
    【解析】
    列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
    【详解】
    如图:

    共有12种情况,在第三象限的情况数有2种,
    故不再第三象限的共10种,
    不在第三象限的概率为,
    故答案为.
    【点睛】
    本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
    15、18
    【解析】
    三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
    【详解】
    ∵点G是△ABC的重心,

    ∵GB=3,EG=GC=4,BE=GA=5,
    ∴,即BG⊥CE,
    ∵CD为△ABC的中线,


    故答案为:18.
    【点睛】
    考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.
    16、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.

    三、解答题(共8题,共72分)
    17、 (1)CD=;(2)m= ;(3) n的值为或
    【解析】
    分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
    (2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
    (3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
    详解:(1)过点作⊥,垂足为点,连接.

    在Rt△,∴.
    ∵=6,∴.
    由勾股定理得: .
    ∵⊥,∴.
    (2)在Rt△,∴.
    在Rt△中,.
    在Rt△中,.
    可得: ,解得.
    (3)△成为等腰三角形可分以下几种情况:
    ① 当圆心、在弦异侧时
    i),即,由,解得.
    即圆心距等于、的半径的和,就有、外切不合题意舍去.
    ii),由 ,
    解得:,即 ,解得.
    ②当圆心、在弦同侧时,同理可得: .
    ∵是钝角,∴只能是,即,解得.
    综上所述:n的值为或.
    点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
    18、(1)(2).
    【解析】
    试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为.代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点.当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.从而得出.
    试题解析:解:(1)∵抛物线与轴交于点A,
    ∴点A的坐标为(0,2). 1分
    ∵,
    ∴抛物线的对称轴为直线,顶点B的坐标为(1,). 2分
    又∵点C与点A关于抛物线的对称轴对称,
    ∴点C的坐标为(2,2),且点C在抛物线上.
    设直线BC的解析式为.
    ∵直线BC经过点B(1,)和点C(2,2),
    ∴解得
    ∴直线BC的解析式为
    . 2分

    (2)∵抛物线中,
    当时,,
    ∴点D的坐标为(1,6). 1分
    ∵直线中,
    当时,,
    当时,,
    ∴如图,点E的坐标为(0,1),
    点F的坐标为(1,2).
    设点A平移后的对应点为点,点D平移后的对应点为点.
    当图象G向下平移至点与点E重合时, 点在直线BC上方,
    此时t=1; 5分
    当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.
    6分
    结合图象可知,符合题意的t的取值范围是. 7分
    考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.
    19、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
    20、(1)证明见解析(2) (3)EP+EQ= EC
    【解析】
    (1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得 AP=CQ;
    作 CH⊥PQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求
    AH= ,即可求 AP 的长;
    作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O,由题意可证△CNP≌△ CMQ,可得 CN=CM,QM=PN,即可证 Rt△CEM≌Rt△CEN,EN=EM,∠CEM=
    ∠CEN=45°,则可求得 EP、EQ、EC 之间的数量关系.
    【详解】
    解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,
    ∴∠ACP=∠BCQ 且 AC=BC,CP=CQ
    ∴△ACP≌△BCQ(SAS)
    ∴PA=BQ
    如图 2 中,作 CH⊥PQ 于 H
    ∵A、P、Q 共线,PC=2,
    ∴PQ=2,
    ∵PC=CQ,CH⊥PQ
    ∴CH=PH=
    在 Rt△ACH 中,AH==
    ∴PA=AH﹣PH= -
    解:结论:EP+EQ= EC
    理由:如图 3 中,作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O.

    ∵△ACP≌△BCQ,
    ∴∠CAO=∠OBE,
    ∵∠AOC=∠BOE,
    ∴∠OEB=∠ACO=90°,
    ∵∠M=∠CNE=∠MEN=90°,
    ∴∠MCN=∠PCQ=90°,
    ∴∠PCN=∠QCM,
    ∵PC=CQ,∠CNP=∠M=90°,
    ∴△CNP≌△CMQ(AAS),
    ∴CN=CM,QM=PN,
    ∴CE=CE,
    ∴Rt△CEM≌Rt△CEN(HL),
    ∴EN=EM,∠CEM=∠CEN=45°
    ∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,
    ∴EP+EQ=EC
    【点睛】
    本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.
    21、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
    【解析】
    (1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
    (2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
    【详解】
    (1)设每行驶1千米纯用电的费用为x元,根据题意得:
    =
    解得:x=0.26
    经检验,x=0.26是原分式方程的解,
    答:每行驶1千米纯用电的费用为0.26元;
    (2)从A地到B地油电混合行驶,用电行驶y千米,得:
    0.26y+(﹣y)×(0.26+0.50)≤39
    解得:y≥74,即至少用电行驶74千米.
    22、 (1)见解析;(2)m=2
    【解析】
    (1)根据一元二次方程根的判别式进行分析解答即可;
    (2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
    【详解】
    (1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
    ∴方程有两个不相等的实数根;
    (2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
    解得:x=2m+2和x=2m-2,
    ∵2m+2>2m﹣2,x1>x2,
    ∴x1=2m+2,x2=2m﹣2,
    又∵x1=2x2,
    ∴2m+2=2(2m﹣2)解得:m=2.
    【点睛】
    (1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
    23、,当x=1时,原式=﹣1.
    【解析】
    先化简分式,然后将x的值代入计算即可.
    【详解】
    解:原式=
    = .

    且,

    ∴x的整数有,
    ∴取,
    当时,
    原式.
    【点睛】
    本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
    24、xn+1-1
    【解析】
    试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
    试题解析:(x﹣1)(++…x+1)=.
    故答案为.
    考点:平方差公式.

    相关试卷

    2023-2024学年河北省承德市承德县七年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年河北省承德市承德县七年级(上)期末数学试卷(含详细答案解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河北省承德市承德县七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河北省承德市承德县七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年河北省承德市承德县八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年河北省承德市承德县八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map