2022届河北省保定市冀英校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
2.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A. B.
C. D.
3.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( )
A.30° B.60° C.90° D.45°
4.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
5.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A. B.
C. D.
6. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A. B. C. D.
7.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
8.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )
A.① B.③ C.②或④ D.①或③
9.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
A.6 B.3.5 C.2.5 D.1
10.估算的值在( )
A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.
12.方程3x(x-1)=2(x-1)的根是
13.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.
14.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.
15.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为( )
A.144° B.84° C.74° D.54°
16.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.
三、解答题(共8题,共72分)
17.(8分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求直线AB和反比例函数的解析式;
(1)求△OCD的面积.
18.(8分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.
19.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.
20.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:
(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
21.(8分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
22.(10分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
23.(12分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
24.如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
(1)求证:△PMN是等腰三角形;
(2)将△ADE绕点A逆时针旋转,
①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
考点:一元二次方程根的判别式.
2、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
3、B
【解析】
【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
【详解】∵∠BAC=30°,
∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
故选B.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
4、B
【解析】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.
【详解】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.
故选B.
【点睛】
本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.
5、C
【解析】
试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.
故选C.
考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系
6、C
【解析】
分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
故选C.
点睛:考查函数的图象,正确理解题目的意思是解题的关键.
7、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
8、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
故答案为①或③.
故选D.
【点睛】
本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
9、C
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.
【点睛】
考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
10、C
【解析】
由可知56,即可解出.
【详解】
∵
∴56,
故选C.
【点睛】
此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
【详解】
连接.
∵是的切线,
∴;
∴,
∴当时,线段OP最短,
∴PQ的长最短,
∵在中,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
12、x1=1,x2=-.
【解析】
试题解析:3x(x-1)=2(x-1)
3x(x-1)-2 (x-1) =0
(3x-2)(x-1)=0
3x-2=0,x-1=0
解得:x1=1,x2=-.
考点:解一元二次方程---因式分解法.
13、40
【解析】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,
根据题意得:,
解得:.
答:A型号的计算器的每只进价为40元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
14、 (x﹣1)(x﹣2)
【解析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.
【详解】
解:已知方程的两根为:x1=1,x2=2,可得:
(x﹣1)(x﹣2)=0,
∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).
【点睛】
一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)
15、B
【解析】
正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.
16、150
【解析】
设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.
三、解答题(共8题,共72分)
17、(1),;(1)2.
【解析】
试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
考点:反比例函数与一次函数的交点问题.
18、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
【解析】
(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
【详解】
解:(1)△APD≌△CPD.
理由:∵四边形ABCD是菱形,
∴AD=CD,∠ADP=∠CDP.
又∵PD=PD,∴△APD≌△CPD(SAS).
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA(两组角相等则两三角形相似).
(3)猜想:PC2=PE•PF.
理由:∵△APE∽△FPA,
∴即PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF.
【点睛】
本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
19、 (1)证明见解析;(2) △APQ是等边三角形.
【解析】
(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
【详解】
证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
(2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
∴△APQ是等边三角形.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
20、(1)30;;(2).
【解析】
试题分析:(1)根据题意列式求值,根据相应数据画图即可;
(2)根据题意列表,然后根据表中数据求出概率即可.
解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
故答案为30,144°;
补全统计图如图所示:
(2)根据题意列表如下:
设竖列为小红抽取的跑道,横排为小花抽取的跑道,
记小红和小花抽在相邻两道这个事件为A,
∴.
考点:列表法与树状图法;扇形统计图;利用频率估计概率.
21、
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
22、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
23、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
【解析】
(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;
(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.
【详解】
解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.
∴y1=﹣x+1.
设y2=a(x﹣6)2+1,把(3,4)代入得,
4=a(3﹣6)2+1,解得a=.
∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.
(2)收益W=y1﹣y2,
=﹣x+1﹣(x2﹣4x+2)
=﹣(x﹣5)2+,
∵a=﹣<0,
∴当x=5时,W最大值=.
故5月出售每千克收益最大,最大为元.
【点睛】
本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法
24、(1)见解析;(2)①见解析;②.
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
【详解】
(1)如图1,∵点N,P是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∴△PMN是等腰三角形;
(2)①如图2,∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE,
∵点M、N、P分别是线段DE、BC、CD的中点,
∴PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△CAE,
∴BD=CE,
如图4,连接AM,
∵M是DE的中点,N是BC的中点,AB=AC,
∴A、M、N共线,且AN⊥BC,
由勾股定理得:AN==4,
∵AD=AE=1,AB=AC=6,
∴=,∠DAE=∠BAC,
∴△ADE∽△AEC,
∴,
∴,
∴AM=,DE=,
∴EM=,
如图3,Rt△ACM中,CM===,
∴BD=CE=CM+EM=.
【点睛】
此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析: 这是一份河北省保定市莲池区冀英学校2021-2022学年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算结果是等内容,欢迎下载使用。
2022年河北省保定市重点名校中考数学考前最后一卷含解析: 这是一份2022年河北省保定市重点名校中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是等内容,欢迎下载使用。