2022届北京市教院附中中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A.110 B.158 C.168 D.178
2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
A. B.
C. D.
3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
4.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1 B.2 C.5 D.6
5.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
6.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
7.在平面直角坐标系内,点P(a,a+3)的位置一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A. B. C. D.
9.如果(,均为非零向量),那么下列结论错误的是( )
A.// B.-2=0 C.= D.
10.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如果实数x、y满足方程组,求代数式(+2)÷.
12.的相反数是_____,倒数是_____,绝对值是_____
13.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.
14.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
15.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.
17.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与圆O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.
19.(5分)化简:
20.(8分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.
21.(10分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
22.(10分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
23.(12分)如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.
24.(14分)先化简,然后从中选出一个合适的整数作为的值代入求值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据排列规律,10下面的数是12,10右面的数是14,
∵8=2×4−0,22=4×6−2,44=6×8−4,
∴m=12×14−10=158.
故选C.
2、C
【解析】
先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
【详解】
小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
∵小进比小俊少用了40秒,
方程是,
故选C.
【点睛】
本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
3、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
4、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
5、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
6、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
7、D
【解析】
判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.
【详解】
当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,
故选D.
【点睛】
本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.
8、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
锥形瓶从上面往下看看到的是两个同心圆.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
9、B
【解析】
试题解析:向量最后的差应该还是向量. 故错误.
故选B.
10、D
【解析】
分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
【详解】
阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【点睛】
考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.
点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
12、 ,
【解析】
∵只有符号不同的两个数是互为相反数,
∴的相反数是;
∵乘积为1的两个数互为倒数,
∴的倒数是;
∵负数得绝对值是它的相反数,
∴绝对值是
故答案为(1). (2). (3).
13、-4<x<1
【解析】
将P(1,1)代入解析式y1=mx,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.
故答案为-4<x<1.
点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.
14、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
15、3.
【解析】
先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
【详解】
∵四边形ABCD是矩形,
∴∠ADC=90°,AB=CD,
∵DE⊥AC,
∴∠AED=90°,
∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
∴∠ADE=∠ACD,
∴tan∠ACD=tan∠ADE==,
设AD=4k,CD=3k,则AC=5k,
∴5k=5,
∴k=1,
∴CD=AB=3,
故答案为3.
【点睛】
本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
16、24
【解析】
试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;
考点:三角函数、菱形的性质及勾股定理;
17、四丈五尺
【解析】
根据同一时刻物高与影长成正比可得出结论.
【详解】
解:设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴=,
解得x=45(尺).
故答案为:四丈五尺.
【点睛】
本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.
三、解答题(共7小题,满分69分)
18、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
【解析】
(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
【详解】
(1)CD与圆O的位置关系是相切,
理由是:连接OC,
∵OA=OC,
∴∠OCA=∠CAB,
∵∠CAB=∠CAD,
∴∠OCA=∠CAD,
∴OC∥AD,
∵CD⊥AD,
∴OC⊥CD,
∵OC为半径,
∴CD与圆O的位置关系是相切;
(2)连接BC,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵圆O的半径为3,
∴AB=6,
∵∠CAB=30°,
∴
∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
∴△CAB∽△DAC,
∴
∴
∴
【点睛】
本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
19、x+2
【解析】
先把括号里的分式通分,化简,再计算除法.
【详解】
解:原式= =x+2
【点睛】
此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.
20、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形
【解析】
(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;
(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;
【详解】
(1)在Rt△ABC中,AB===10,
BP=2t,AQ=t,则AP=10﹣2t,
∵PQ∥BC,
∴△APQ∽△ABC,
∴=,即=,
解得t=,
∴当t=时,PQ∥BC.
(2)过点P作PD⊥AC于D,则有△APD∽△ABC,
∴=,即=,
∴PD=6﹣t,
∴y=t(6﹣t)=﹣(t﹣)2+,
∴当t=时,y有最大值为.
(3)存在.
理由:连接PP′,交AC于点O.
∵四边形PQP′C为菱形,
∴OC=CQ,
∵△APO∽△ABC,
∴=,即=,
∴OA=(5﹣t),
∴8﹣(5﹣t)=(8﹣t),
解得t=,
∴当t=时,四边形PQP′C为菱形.
【点睛】
本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.
21、 (1)2 ;(2) ;(3)见解析.
【解析】
分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
本题解析:(1)对于抛物线y=﹣x2+x+,
令x=0,得y=,即C(0,),D(2,),
∴DH=,
令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵AE⊥AC,EH⊥AH,
∴△ACO∽△EAH,
∴=,即=,
解得:EH=,
则DE=2;
(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
联立得:F (0,﹣),P(2,),
过点M作y轴的平行线交FH于点Q,
设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
∵对称轴为:直线m=<2,开口向下,
∴m=时,△MPF面积有最大值: ;
(3)由(2)可知C(0,),F(0,),P(2,),
∴CF=,CP==,
∵OC=,OA=1,
∴∠OCA=30°,
∵FC=FG,
∴∠OCA=∠FGA=30°,
∴∠CFP=60°,
∴△CFP为等边三角形,边长为,
翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
1)当K F′=KF″时,如图3,
点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
∴OK=3;
2)当F′F″=F′K时,如图4,
∴F′F″=F′K=4,
∵FP的解析式为:y=x﹣,
∴在平移过程中,F′K与x轴的夹角为30°,
∵∠OAF=30°,
∴F′K=F′A
∴AK=4
∴OK=4﹣1或者4+1;
3)当F″F′=F″K时,如图5,
∵在平移过程中,F″F′始终与x轴夹角为60°,
∵∠OAF=30°,
∴∠AF′F″=90°,
∵F″F′=F″K=4,
∴AF″=8,
∴AK=12,
∴OK=1,
综上所述:OK=3,4﹣1,4+1或者1.
点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
22、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
23、见解析
【解析】
试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.
试题解析:∵△ABC是等边三角形,
∴AC=BC,∠B=∠ACB=60°,
∵线段CD绕点C顺时针旋转60°得到CE,
∴CD=CE,∠DCE=60°,
∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,
∴∠BCD=∠ACE,
在△BCD与△ACE中,
,
∴△BCD≌△ACE,
∴∠EAC=∠B=60°,
∴∠EAC=∠ACB,
∴AE∥BC.
24、-1
【解析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
【详解】
解:
,
当时,原式.
【点睛】
本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
北京市清华附中2023年中考数学最后冲刺模拟试卷含解析: 这是一份北京市清华附中2023年中考数学最后冲刺模拟试卷含解析,共18页。
山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析: 这是一份山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析,共14页。
2022年北京市中学国人民大附中中考数学最后冲刺模拟试卷含解析: 这是一份2022年北京市中学国人民大附中中考数学最后冲刺模拟试卷含解析,共22页。