终身会员
搜索
    上传资料 赚现金
    2022届第二附属中学中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2022届第二附属中学中考猜题数学试卷含解析01
    2022届第二附属中学中考猜题数学试卷含解析02
    2022届第二附属中学中考猜题数学试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届第二附属中学中考猜题数学试卷含解析

    展开
    这是一份2022届第二附属中学中考猜题数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,如图,空心圆柱体的左视图是,把一副三角板如图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
    A. B.
    C. D.
    2.已知一次函数且随的增大而增大,那么它的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3.-2的倒数是( )
    A.-2 B. C. D.2
    4.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    5.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )

    A. B. C. D.4
    6.如果向北走6km记作+6km,那么向南走8km记作(  )
    A.+8km B.﹣8km C.+14km D.﹣2km
    7.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(  )
    A. B.
    C. D.
    8.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
    (1)出租车的速度为100千米/时;
    (2)客车的速度为60千米/时;
    (3)两车相遇时,客车行驶了3.75小时;
    (4)相遇时,出租车离甲地的路程为225千米.
    其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )

    A.0.7米 B.1.5米 C.2.2米 D.2.4米
    10.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    11.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是(  )
    A.= B.=
    C.= D.=
    12.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )

    A.30 B.40 C.60 D.80
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.
    14.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.

    15.计算:.
    16.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.
    17.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.

    18.若分式有意义,则实数x的取值范围是_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.

    20.(6分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    21.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

    请根据以上信息,回答下列问题:
    (l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
    (2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
    (3)请估计全校共征集作品的件数.
    (4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
    22.(8分)已知如图,直线y=﹣ x+4 与x轴相交于点A,与直线y= x相交于点P.
    (1)求点P的坐标;
    (2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时, F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出: S与a之间的函数关系式
    (3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。

    23.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.

    24.(10分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
    25.(10分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.

    26.(12分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
    (1)求该反比例函数的解析式.
    (2)求S与t的函数关系式;并求当S=时,对应的t值.
    (3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.

    27.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
    (1)求该抛物线所表示的二次函数的表达式;
    (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
    (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
    根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
    可以列出方程:.
    故选D.
    2、B
    【解析】
    根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
    【详解】
    解:∵一次函数y=kx-3且y随x的增大而增大,
    ∴它的图象经过一、三、四象限,
    ∴不经过第二象限,
    故选:B.
    【点睛】
    本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.
    3、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    4、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    5、A
    【解析】
    试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
    若旋转角度为11°,则∠ACO=30°+11°=41°.
    ∴∠AOC=180°-∠ACO-∠CAO=90°.
    在等腰Rt△ABC中,AB=4,则AO=OC=2.
    在Rt△AOD1中,OD1=CD1-OC=3,
    由勾股定理得:AD1=.
    故选A.
    考点: 1.旋转;2.勾股定理.
    6、B
    【解析】
    正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
    【详解】
    解:向北和向南互为相反意义的量.
    若向北走6km记作+6km,
    那么向南走8km记作﹣8km.
    故选:B.
    【点睛】
    本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
    7、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    8、D
    【解析】
    根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
    【详解】
    由图象可得,
    出租车的速度为:600÷6=100千米/时,故(1)正确,
    客车的速度为:600÷10=60千米/时,故(2)正确,
    两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
    相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
    故选D.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
    9、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.

    【点睛】
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    10、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    11、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    12、B
    【解析】
    过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
    【详解】
    过点A作AM⊥x轴于点M,如图所示.

    设OA=a,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a,a).
    ∵点A在反比例函数y=的图象上,
    ∴a•a=a2=48,
    解得:a=1,或a=-1(舍去).
    ∴AM=8,OM=6,OB=OA=1.
    ∵四边形OACB是菱形,点F在边BC上,
    ∴S△AOF=S菱形OBCA=OB•AM=2.
    故选B.
    【点睛】
    本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题解析:根据题意,得:
    解得:


    故答案为
    【点睛】
    :一个正数有2个平方根,它们互为相反数.
    14、143549
    【解析】
    根据题中密码规律确定所求即可.
    【详解】
    532=5×3×10000+5×2×100+5×(2+3)=151025
    924=9×2×10000+9×4×100+9×(2+4)=183654,
    863=8×6×10000+8×3×100+8×(3+6)=482472,
    ∴725=7×2×10000+7×5×100+7×(2+5)=143549.
    故答案为:143549
    【点睛】
    本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
    15、
    【解析】
    此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式


    【点睛】
    此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.
    16、130
    【解析】
    分析:n边形的内角和是 因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.
    详解:设多边形的边数为x,由题意有

    解得
    因而多边形的边数是18,
    则这一内角为
    故答案为
    点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
    17、
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】60000小数点向左移动4位得到6,
    所以60000用科学记数法表示为:6×1,
    故答案为:6×1.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    18、
    【解析】
    由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
    解:∵分式有意义,
    ∴x-1≠2,即x≠1.
    故答案为x≠1.
    本题主要考查分式有意义的条件:分式有意义,分母不能为2.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
    【解析】
    (1)解方程求出点A的坐标,根据勾股定理计算即可;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
    【详解】
    解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
    ∵点A位于点B的左侧,
    ∴A(﹣1,0),
    ∵直线y=x+m经过点A,
    ∴﹣1+m=0,
    解得,m=1,
    ∴点D的坐标为(0,1),
    ∴AD==1;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,
    y=x1+bx+1=(x+)1+1﹣,
    则点C′的坐标为(﹣,1﹣),
    ∵CC′平行于直线AD,且经过C(0,﹣4),
    ∴直线CC′的解析式为:y=x﹣4,
    ∴1﹣=﹣﹣4,
    解得,b1=﹣4,b1=6,
    ∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
    【点睛】
    本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
    20、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    21、(1)抽样调查(2)150°(3)180件(4)
    【解析】
    分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    (2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;
    (3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
    (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
    详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
    故答案为抽样调查.
    (2)所调查的4个班征集到的作品数为:6÷=24件,
    C班有24﹣(4+6+4)=10件,
    补全条形图如图所示,

    扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
    故答案为150°;
    (3)∵平均每个班=6件,
    ∴估计全校共征集作品6×30=180件.
    (4)画树状图得:

    ∵共有20种等可能的结果,两名学生性别相同的有8种情况,
    ∴恰好选取的两名学生性别相同的概率为.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..
    22、(1); (2);(3)
    【解析】
    (1)联立两直线解析式,求出交点P坐标即可;
    (2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函数关系式.
    (3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.
    【详解】
    解:(1)联立得:,解得:;
    ∴P的坐标为;
    (2)分两种情况考虑:
    当时,由F坐标为(a,0),得到OF=a,
    把E横坐标为a,代入得:即
    此时
    当时,重合的面积就是梯形面积,
    F点的横坐标为a,所以E点纵坐标为
    M点横坐标为:-3a+12,

    所以;
    (3)令中的y=0,解得:x=4,则A的坐标为(4,0)
    则AP= ,则PM=2
    又∵OP=
    ∴点P向左平移3个单位在向下平移可以得到M1
    点P向右平移3个单位在向上平移可以得到M2
    ∴A向左平移3个单位在向下平移可以得到 Q1(1,-)
    A向右平移3个单位在向上平移可以得到 Q1(7,)
    所以,存在Q点,且坐标是
    【点睛】
    本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    23、(1)见解析;(1)70°.
    【解析】
    (1)根据全等三角形的判定即可判断△AEC≌△BED;
    (1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
    【详解】
    证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
    在△AOD和△BOE中,
    ∠A=∠B,∴∠BEO=∠1.
    又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
    在△AEC和△BED中,

    ∴△AEC≌△BED(ASA).
    (1)∵△AEC≌△BED,
    ∴EC=ED,∠C=∠BDE.
    在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
    ∴∠BDE=∠C=70°.
    【点睛】
    本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
    24、(1);(1) ;(3);
    【解析】
    (1)直接根据概率公式求解;
    (1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
    (3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
    【详解】
    解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
    (1)画树状图为:

    共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
    所以一个径赛项目和一个田赛项目的概率P1==;
    (3)两个项目都是径赛项目的结果数为6,
    所以两个项目都是径赛项目的概率P1==.
    故答案为.
    考点:列表法与树状图法.
    25、∠CMA =35°.
    【解析】
    根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
    【详解】
    ∵AB∥CD,∴∠ACD+∠CAB=180°.
    又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
    又∵AB∥CD,∴∠CMA=∠BAM=35°.
    【点睛】
    本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
    26、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
    【解析】
    (1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
    (2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
    (3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
    【详解】
    解:(1)∵正方形OABC的面积为9,
    ∴点B的坐标为:(3,3),
    ∵点B在反比例函数y=(k>0,x>0)的图象上,
    ∴3=,
    即k=9,
    ∴该反比例函数的解析式为:y= y=(x>0);
    (2)根据题意得:P(t,),
    分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
    若S=,
    则﹣3t+9=,
    解得:t=;
    ②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
    若S=,则9﹣=,
    解得:t=6;
    ∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
    当S=时,对应的t值为或6;
    (3)存在.
    若OB=BF=3,此时CF=BC=3,
    ∴OF=6,
    ∴6=,
    解得:t=;
    若OB=OF=3,则3=,
    解得:t= ;
    若BF=OF,此时点F与C重合,t=3;
    ∴当t=或或3时,使△FBO为等腰三角形.
    【点睛】
    此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
    27、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    【解析】
    分析:(1)待定系数法求解可得;
    (2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
    (3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
    详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
    将点C(0,2)代入,得:-4a=2,
    解得:a=-,
    则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
    (2)由题意知点D坐标为(0,-2),
    设直线BD解析式为y=kx+b,
    将B(4,0)、D(0,-2)代入,得:
    ,解得:,
    ∴直线BD解析式为y=x-2,
    ∵QM⊥x轴,P(m,0),
    ∴Q(m,-m2+m+2)、M(m,m-2),
    则QM=-m2+m+2-(m-2)=-m2+m+4,
    ∵F(0,)、D(0,-2),
    ∴DF=,
    ∵QM∥DF,
    ∴当-m2+m+4=时,四边形DMQF是平行四边形,
    解得:m=-1(舍)或m=3,
    即m=3时,四边形DMQF是平行四边形;
    (3)如图所示:

    ∵QM∥DF,
    ∴∠ODB=∠QMB,
    分以下两种情况:
    ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
    则,
    ∵∠MBQ=90°,
    ∴∠MBP+∠PBQ=90°,
    ∵∠MPB=∠BPQ=90°,
    ∴∠MBP+∠BMP=90°,
    ∴∠BMP=∠PBQ,
    ∴△MBQ∽△BPQ,
    ∴,即,
    解得:m1=3、m2=4,
    当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
    ∴m=3,点Q的坐标为(3,2);
    ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
    此时m=-1,点Q的坐标为(-1,0);
    综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.
    【详解】
    请在此输入详解!

    相关试卷

    2022年上海新云台中学中考猜题数学试卷含解析: 这是一份2022年上海新云台中学中考猜题数学试卷含解析,共24页。试卷主要包含了已知,则的值是,如图,将△ABC绕点C,用一根长为a等内容,欢迎下载使用。

    2022届青海省中考猜题数学试卷含解析: 这是一份2022届青海省中考猜题数学试卷含解析,共17页。试卷主要包含了将抛物线y=﹣,五个新篮球的质量,平面直角坐标系中的点P,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年陕西省西北工业大附属中学中考数学猜题卷含解析: 这是一份2021-2022学年陕西省西北工业大附属中学中考数学猜题卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map