2021-2022学年江苏省无锡市宜兴市官林区联盟重点中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6 B.5 C.4 D.3
2.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
A.3 B.﹣1 C.﹣3 D.﹣2
3.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
4.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是( )
A. B.
C. D.
5.如图是几何体的三视图,该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.三棱锥
6.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
7.函数与在同一坐标系中的大致图象是( )
A、 B、 C、 D、
8.计算:的结果是( )
A. B.. C. D.
9.﹣2×(﹣5)的值是( )
A.﹣7 B.7 C.﹣10 D.10
10.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2 B. C. D.2
二、填空题(共7小题,每小题3分,满分21分)
11.计算:____.
12.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.
13.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.
14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)
15.2017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_____.
16.分式方程-1=的解是x=________.
17.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).
三、解答题(共7小题,满分69分)
18.(10分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(1)已知⊙O的半径为1.
①若=,求BC的长;
②当为何值时,AB•AC的值最大?
19.(5分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)这组数据的中位数是 ,众数是 ;
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?
20.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
21.(10分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分)
频数(人)
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
22.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
23.(12分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;
(2)求出图中a的值;
(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.
24.(14分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
【点睛】
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
2、C
【解析】
试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
【考点】根与系数的关系;一元二次方程的解.
3、A
【解析】
分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
详解:根据题意得: ,
计算得出:n=20,
故选A.
点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
4、B
【解析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【详解】
解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
故选:B.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
5、C
【解析】
分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.
详解:∵几何体的主视图和左视图都是长方形,
故该几何体是一个柱体,
又∵俯视图是一个三角形,
故该几何体是一个三棱柱,
故选C.
点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.
6、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
【详解】
∵反比例函数y=中,k=1>0,
∴此函数图象的两个分支在一、三象限,
∵x1<x2<0<x1,
∴A、B在第三象限,点C在第一象限,
∴y1<0,y2<0,y1>0,
∵在第三象限y随x的增大而减小,
∴y1>y2,
∴y2<y1<y1.
故选D.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
7、D.
【解析】
试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
故选D.
考点:一次函数和反比例函数的图象.
8、B
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:原式=
=
=
故选;B
【点睛】
本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
9、D
【解析】
根据有理数乘法法则计算.
【详解】
﹣2×(﹣5)=+(2×5)=10.
故选D.
【点睛】
考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .
10、C
【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=CP=1,
∴PE=,
∴OP=2PE=2,
∵PD⊥OA,点M是OP的中点,
∴DM=OP=.
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
二、填空题(共7小题,每小题3分,满分21分)
11、5.
【解析】
试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
考点:绝对值计算.
12、48°
【解析】
连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
【详解】
连接OA,
∵五边形ABCDE是正五边形,
∴∠AOB==72°,
∵△AMN是正三角形,
∴∠AOM==120°,
∴∠BOM=∠AOM-∠AOB=48°,
故答案为48°.
点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
13、
【解析】
试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.
考点:概率.
14、②③④
【解析】
试题解析:根据已知条件不能推出OA=OD,∴①错误;
∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠BAC,
∴AD⊥EF,∴②正确;
∵∠BAC=90°,∠AED=∠AFD=90°,
∴四边形AEDF是矩形,
∵AE=AF,
∴四边形AEDF是正方形,∴③正确;
∵AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,∴④正确;
∴②③④正确,
15、1.88×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:把18800000000用科学记数法表示为1.88×1,
故答案为:1.88×1.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、-5
【解析】
两边同时乘以(x+3)(x-3),得
6-x2+9=-x2-3x,
解得:x=-5,
检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
故答案为:-5.
【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.
17、①②③
【解析】
依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
【详解】
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,故①正确;
∵∠DCF=90°﹣60°=30°,
∴tan∠DCF=,
∵△DFP∽△BPH,
∴,
∵BP=CP=CD,
∴,故②正确;
∵PC=DC,∠DCP=30°,
∴∠CDP=75°,
又∵∠DHP=∠DCH+∠CDH=75°,
∴∠DHP=∠CDP,而∠DPH=∠CPD,
∴△DPH∽△CPD,
∴,即PD2=PH•CP,
又∵CP=CD,
∴PD2=PH•CD,故③正确;
如图,过P作PM⊥CD,PN⊥BC,
设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
=×4×2+×2×4﹣×4×4
=4+4﹣8
=4﹣4,
∴,故④错误,
故答案为:①②③.
【点睛】
本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(1)设AB=5k、AC=1k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=1k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=1﹣k,
在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=16﹣4d2,
AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当d=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
19、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次
【解析】
(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;
(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;
(3)利用加权平均数公式求得违章的平均次数,从而求解.
【详解】
解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,
∴中位数为=7,众数是7和8,
故答案为:7、7和8;
(2)补全图形如下:
(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),
∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
20、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
21、(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.
【解析】
分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;
(2)根据(1)的计算结果即可补全频数分布直方图;
(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;
(4)利用总数3000乘以“优”等学生的所占的频率即可.
详解:(1)本次调查的总人数为10÷0.05=200,
则m=200×0.35=70,n=40÷200=0.2,
(2)频数分布直方图如图所示,
(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,
∴这200名学生成绩的中位数会落在80≤x<90分数段,
(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).
点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.
22、 (1)证明见解析;(2)证明见解析;(3)CE=.
【解析】
(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
【详解】
解:(1)如图1所示,连接OB,
∵∠A=60°,OA=OB,
∴△AOB为等边三角形,
∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
∵△DBE为等边三角形,
∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
∴∠ABD=∠OBE,
∴△ADB≌△OBE(SAS),
∴OE=AD;
(2)如图2所示,
由(1)可知△ADB≌△OBE,
∴∠BOE=∠A=60°,∠ABD=∠OBE,
∵∠BOA=60°,
∴∠EOC=∠BOE =60°,
又∵OB=OC,OE=OE,
∴△BOE≌△COE(SAS),
∴∠OCE=∠OBE,
∴∠OCE=∠ABD;
(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,
∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
∴△ADB≌△MQD(ASA),
∴AB=MQ,
∵∠A=60°,∠ABC=90°,
∴∠ACB=30°,
∴AB==AO=CO=OG,
∴MQ=OG,
∵AB∥GO,
∴MQ∥GO,
∴四边形MQOG为平行四边形,
设AD为x,则OE=x,OF=2x,
∵OD=3,
∴OA=OG=3+x,GF=3﹣x,
∵DQ=AD=x,
∴OQ=MG=3﹣x,
∴MG=GF,
∵∠DOG=60°,
∴∠MGF=120°,
∴∠GMF=∠GFM=30°,
∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
∴∠DMF=∠EDN,
∵OD=3,
∴ON=,DN=,
∵tan∠BMF=,
∴tan∠NDE=,
∴ ,
解得x=1,
∴NE=,
∴DE=,
∴CE=.
故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
【点睛】
本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
23、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.
【解析】
(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.
【详解】
解: (1)当0≤x≤8时,设y=k1x+b,
将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20
∴当0≤x≤8时,y=10x+20.
当8<x≤a时,设y=,
将(8,100)的坐标代入y=,
得k2=800
∴当8
当8<x≤a时,y=
(2)将y=20代入y=,
解得x=40,即a=40.
(3)当y=40时,x==20
∴要想喝到不低于40 ℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.
【点睛】
本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.
24、(1);(2)①;②当时,;
当时, ;当时, ;③.
【解析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;
【详解】
解:(1)由题意是等腰直角三角形,
(2) ,
线直的解析式为,直线的解析式
时,直线恰好过点.
,
直线的解析式为,直线的解析式为
①当时,,
②当时,
当时,
当时,
③当时,
,
时, 的最大值为.
当时,
.
时, 的值最大,最大值为.
当时,,
时, 的最大值为,
综上所述,最大值为
故答案为.
【点睛】
本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.
江苏省无锡市江阴市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省无锡市江阴市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
江苏省无锡市凤翔实验学校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省无锡市凤翔实验学校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了函数的图象上有两点,,若,则,下列实数中,有理数是等内容,欢迎下载使用。
巢湖市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份巢湖市重点中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列方程有实数根的是,-5的相反数是等内容,欢迎下载使用。