2021-2022学年江西省南康区毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
2.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
3.下列运算中,计算结果正确的是( )
A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a12÷a6=a2
4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时)
3
3.5
4
4.5
人 数
1
1
3
2
A.中位数是4,众数是4 B.中位数是3.5,众数是4
C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
6.下列说法正确的是( )
A.﹣3是相反数 B.3与﹣3互为相反数
C.3与互为相反数 D.3与﹣互为相反数
7.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )
A. B. C. D.
8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
9.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是
A.点A和点C B.点B和点D
C.点A和点D D.点B和点C
10.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
11.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
12.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是( )
A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.
14.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
15.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.
16.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度
17.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
18.已知抛物线与直线在之间有且只有一个公共点,则的取值范围是__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
20.(6分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间(单位:小时),将获得的数据分成四组,绘制了如下统计图(:,:,:,:),根据图中信息,解答下列问题:
(1)这项工作中被调查的总人数是多少?
(2)补全条形统计图,并求出表示组的扇形统计图的圆心角的度数;
(3)如果李青想从组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.
21.(6分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
(1)求该抛物线的表达式和∠ACB的正切值;
(2)如图2,若∠ACP=45°,求m的值;
(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.
22.(8分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
23.(8分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
24.(10分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
例如:求点到直线的距离.
解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
25.(10分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.
26.(12分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
27.(12分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
2、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
3、C
【解析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.
【详解】
A、a2•a3=a2+3=a5,故本选项错误;
B、a2+a3不能进行运算,故本选项错误;
C、(a2)3=a2×3=a6,故本选项正确;
D、a12÷a6=a12﹣6=a6,故本选项错误.
故选:C.
【点睛】
本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.
4、A
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
∵=>=,
∴从甲和丙中选择一人参加比赛,
∵=<<,
∴选择甲参赛,
故选A.
【点睛】
此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.
5、A
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据中4出现的次数最多,众数为4,
∵共有7个人,
∴第4个人的劳动时间为中位数,
所以中位数为4,
故选A.
【点睛】
本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、B
【解析】
符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
【详解】
A、3和-3互为相反数,错误;
B、3与-3互为相反数,正确;
C、3与互为倒数,错误;
D、3与-互为负倒数,错误;
故选B.
【点睛】
此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
7、A
【解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
【详解】
解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
∴二元一次方程组的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
8、C
【解析】
解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.
因为六边形ABCDEF的六个角都是120°,
所以六边形ABCDEF的每一个外角的度数都是60°.
所以都是等边三角形.
所以
所以六边形的周长为3+1+4+2+2+3=15;
故选C.
9、C
【解析】
根据相反数的定义进行解答即可.
【详解】
解:由A表示-2,B表示-1,C表示0.75,D表示2.
根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
故答案为C.
【点睛】
本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
10、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
11、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
12、C
【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
【详解】
解:∵抛物线和轴有交点,
,
解得:且.
故选.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、π.
【解析】
由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.
【详解】
:∵△ABC为等边三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
点P的路径是l=,
故答案为.
【点睛】
本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.
14、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
15、4π
【解析】
根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠BCD+∠A=180°,
∵∠BOD=2∠A,∠BOD=∠BCD,
∴2∠A+∠A=180°,
解得:∠A=60°,
∴∠BOD=120°,
∴的长=,
故答案为4π.
【点睛】
本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.
16、60
【解析】
∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB
∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°
∴θ=60°.
17、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
18、或.
【解析】
联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当△时,求出此时m的值;当△时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;
【详解】
联立
可得:,
令,
抛物线与直线在之间有且只有一个公共点,
即的图象在上与x轴只有一个交点,
当△时,
即△
解得:,
当时,
当时,
,满足题意,
当△时,
令,,
令,,
,
令代入
解得:,
此方程的另外一个根为:,
故也满足题意,
故的取值范围为:或
故答案为: 或.
【点睛】
此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
【解析】
(1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
(1 )由题意可得:cos∠FHE=,则∠FHE=60°;
(2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,
在 Rt△ABC 中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
∴sin60°==,
∴FG≈2.17(m),
∴FM=FG+GM≈4.4(米),
答:篮板顶端 F 到地面的距离是 4.4 米.
【点睛】
本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
20、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).
【解析】
分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.
详解:(1)被调查的总人数为19÷38%=50人;
(2)C组的人数为50﹣(15+19+4)=12(人),
补全图形如下:
表示A组的扇形统计图的圆心角的度数为360°×=108°;
(3)画树状图如下,
共有12个可能的结果,恰好选中甲的结果有6个, ∴P(恰好选中甲)=.
点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.
21、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
【解析】
(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
【详解】
解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
解得:;
∴该抛物线的解析式为y=x2﹣3x+1,
过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.
∵∠COA=∠G=90°,∠CAO=∠BAG,
∴△GAB∽△OAC.
∴=2.
∴BG=2AG,
在Rt△ABG中,∵BG2+AG2=AB2,
∴(2AG)2+AG2=22,解得: AG=.
∴BG=,CG=AC+AG=2+=.
在Rt△BCG中,tan∠ACB═.
(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.
应用“全角夹半角”可得AK=OA+HK,
设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
∴22+h2=(6﹣h)2.解得h=,
∴点K(1,),
设直线CK的解析式为y=hx+1,
将点K(1,)代入上式,得=1h+1.解得h=﹣,
∴直线CK的解析式为y=﹣x+1,
设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
将方程整理,得3x2﹣16x=0,
解得x1=,x2=0(不合题意,舍去)
将x1=代入y=﹣x+1,得y=,
∴点P的坐标为(,),
∴m=;
(3)四边形ADMQ是平行四边形.理由如下:
∵CD∥x轴,
∴yC=yD=1,
将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
解得x1=0,x2=6,
∴点D(6,1),
根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
①当1<m<6时,DM=6﹣m,
如图3,
∵△OAN∽△HAP,
∴,
∴=,
∴ON===m﹣1,
∵△ONQ∽△HMQ,
∴,
∴,
∴,
∴OQ=m﹣1,
∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
∴AQ=DM=6﹣m,
又∵AQ∥DM,
∴四边形ADMQ是平行四边形.
②当m>6时,同理可得:四边形ADMQ是平行四边形.
综上,四边形ADMQ是平行四边形.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
22、135° m+n
【解析】
试题分析:
(1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
试题解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下图,过点E作EG⊥CB交CB的延长线于点G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,EG=,
∴GC=BG+BC=4,
∴CE=,
∵△EAC≌△BAD,
∴BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
∵BD=EC,
∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
即当∠ABC=135°时,BD最大=;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
23、(1)12;(2)点A不与点B重合;(3)
【解析】
(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
(3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
【详解】
解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
∴k=4(1﹣m)=6×(﹣m),
∴解得m=﹣2,
∴k=4×[1﹣(﹣2)]=12;
(2)∵m=﹣2,∴B(4,3),
∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
∴A(b,b2).
若点A与点B重合,则有b=4,且b2=3,显然不成立,
∴点A不与点B重合;
(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
解得,b=,
显然抛物线右半支经过点B;
当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
解得,b=,
这时仍然是抛物线右半支经过点C,
∴b的取值范围为≤b≤.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
24、(1)点P在直线上,说明见解析;(2).
【解析】
解:(1) 求:(1)直线可变为,
说明点P在直线上;
(2)在直线上取一点(0,1),直线可变为
则,
∴这两条平行线的距离为.
25、(1)1600千米;(2)1
【解析】
试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;
(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.
试题解析:
(1)设原时速为xkm/h,通车后里程为ykm,则有:
,
解得: .
答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
(2)由题意可得出:(80+120)(1﹣m%)(8+m%)=1600,
解得:m1=1,m2=0(不合题意舍去),
答:m的值为1.
26、(1);(2)30°
【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
【详解】
解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴ED=3,
∴DE=,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
【点睛】
考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
27、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
【解析】
试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
(2)分别求得C的频数及其所占的百分比即可补全统计图;
(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
(4)列出树形图即可求得结论.
试题解析:(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.
(2)如图;
(3),360°×(1-10%-30%-40%)=72°.
(4)如图;
(列表方法略,参照给分).
P(C粽)=.
答:他第二个吃到的恰好是C粽的概率是.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
江西省宜春市高安市2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份江西省宜春市高安市2021-2022学年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了如图所示的几何体,它的左视图是等内容,欢迎下载使用。
江西省彭泽县2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份江西省彭泽县2021-2022学年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,如果,那么代数式的值是,﹣3的绝对值是等内容,欢迎下载使用。