搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析

    2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析第1页
    2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析第2页
    2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2021-2022学年江西省抚州市崇仁县重点达标名校毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,若一次函数y=,关于x的方程,下列运算正确的是,我市连续7天的最高气温为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为(  )
    A.18元 B.36元 C.54元 D.72元
    2.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
    A. B. C. D.
    3.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )

    A. B.
    C. D.
    4.下列计算正确的是
    A. B. C. D.
    5.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是(  )
    A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
    6.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
    A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
    7.下列运算正确的是(  )
    A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
    8.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    9.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
    A. B. C. D.
    10.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )

    A.60海里 B.45海里 C.20海里 D.30海里
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.

    12.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.

    13.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.
    14.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
    15.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
    ①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
    ②如果方程M有两根符号相同,那么方程N的两根符号也相同;
    ③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
    ④如果5是方程M的一个根,那么是方程N的一个根.
    16.关于的方程有两个不相等的实数根,那么的取值范围是__________.
    17.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    19.(5分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
    (1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);
    (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)

    20.(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
    ①当时,直接写出区域内的整点个数;
    ②若区域内恰有4个整点,结合函数图象,求的取值范围.
    21.(10分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.
    (1)求m的取值范围;
    (2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
    22.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
    (1)求反比例函数和一次函数的解析式;
    (2)求直线AB与x轴的交点C的坐标及△AOB的面积;
    (3)求方程的解集(请直接写出答案).

    23.(12分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
    求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
    24.(14分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
    【详解】
    解:根据题意设y=kπx2,
    ∵当x=3时,y=18,
    ∴18=kπ•9,
    则k=,
    ∴y=kπx2=•π•x2=2x2,
    当x=6时,y=2×36=72,
    故选:D.
    【点睛】
    本题考查了二次函数的应用,解答时求出函数的解析式是关键.
    2、D
    【解析】
    甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
    【详解】
    解:由于函数的图像经过点,则有

    ∴图象过第二、四象限,
    ∵k=-1,
    ∴一次函数y=x-1,
    ∴图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
    3、B
    【解析】
    找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.
    【详解】
    解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.

    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.
    4、B
    【解析】
    试题分析:根据合并同类项的法则,可知,故A不正确;
    根据同底数幂的除法,知,故B正确;
    根据幂的乘方,知,故C不正确;
    根据完全平方公式,知,故D不正确.
    故选B.
    点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
    5、B
    【解析】
    根据一次函数的性质,根据不等式组即可解决问题;
    【详解】
    ∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
    ∴,
    解得1≤m<.
    故选:B.
    【点睛】
    本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    6、C
    【解析】
    根据一元一次方程的定义即可求出答案.
    【详解】
    由题意可知:,解得a=−1
    故选C.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
    7、B
    【解析】
    分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
    详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
    B. ()﹣1=2,故该选项正确;
    C.x与y不是同类项,不能合并,故该选项错误;
    D. x6÷x2=x6-2=x4,故该选项错误.
    故选B.
    点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
    8、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    9、A
    【解析】
    根据应用题的题目条件建立方程即可.
    【详解】
    解:由题可得:
    即:
    故答案是:A.
    【点睛】
    本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.
    10、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    【点睛】
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
    【详解】
    延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
    又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
    故答案为.

    【点睛】
    本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
    12、1
    【解析】
    先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.
    【详解】
    解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴DE:BC=AD:AB,
    ∵AD=2,DB=4,
    ∴AB=AD+BD=6,
    ∴1:BC=2:6,
    ∴BC=1,
    故答案为:1.
    【点睛】
    考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
    13、13
    【解析】
    根据同时同地物高与影长成比列式计算即可得解.
    【详解】
    解:设旗杆高度为x米,
    由题意得,,
    解得x=13.
    故答案为13.
    【点睛】
    本题考查投影,解题的关键是应用相似三角形.
    14、10%.
    【解析】
    设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
    【详解】
    设平均每次降价的百分率为,根据题意列方程得,

    解得,(不符合题意,舍去),
    答:这个百分率是.
    故答案为.
    【点睛】
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
    15、①②④
    【解析】
    试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
    ∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
    ②∵和符号相同,和符号也相同,
    ∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
    ③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
    ∵a≠c,
    ∴x2=1,解得:x=±1,错误;
    ④∵5是方程M的一个根,
    ∴25a+5b+c=0,
    ∴a+b+c=0,
    ∴是方程N的一个根,正确.
    故正确的是①②④.
    16、且
    【解析】
    分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
    详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
    ∴△>1且m≠1,
    ∴4-12m>1且m≠1,
    ∴m<且m≠1,
    故答案为:m<且m≠1.
    点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    17、1.
    【解析】
    由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
    【详解】
    ∵BD⊥CD,BD=2,
    ∴S△BCD=BD•CD=2,
    即CD=2.
    ∵C(2,0),
    即OC=2,
    ∴OD=OC+CD=2+2=1,
    ∴B(1,2),代入反比例解析式得:k=10,
    即y=,
    则S△AOC=1.
    故答案为1.
    【点睛】
    本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    19、 (1)21米(2)见解析
    【解析】
    试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.
    (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.
    解:(1)在Rt△BAC中,∠ACB=68°,
    ∴AB=AC•tan68°≈100×2.1=21(米)
    答:所测之处江的宽度约为21米.
    (2)
    ①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答
    20、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
    【解析】
    分析:(1)根据点(4,1)在()的图象上,即可求出的值;
    (2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
    ②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
    详解:(1)解:∵点(4,1)在()的图象上.
    ∴,
    ∴.
    (2)① 3个.(1,0),(2,0),(3,0).
    ② .当直线过(4,0)时:,解得
    .当直线过(5,0)时:,解得

    .当直线过(1,2)时:,解得
    .当直线过(1,3)时:,解得

    ∴综上所述:或.
    点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
    21、(1)且,;(2)当m=1时,方程的整数根为0和3.
    【解析】
    (1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
    (2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.
    【详解】
    解:(1)∵关于x的分式方程的根为非负数,
    ∴且.
    又∵,且,
    ∴解得且.
    又∵方程为一元二次方程,
    ∴.
    综上可得:且,.
    (2)∵一元二次方程有两个整数根x1、x2,m为整数,
    ∴x1+x2=3,,
    ∴为整数,∴m=1或.
    又∵且,,
    ∴m1.
    当m=1时,原方程可化为.
    解得:,.
    ∴当m=1时,方程的整数根为0和3.
    【点睛】
    考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.
    22、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
    【解析】
    试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
    (2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
    (3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
    试题解析:(1)∵B(2,﹣4)在y=上,
    ∴m=﹣1.
    ∴反比例函数的解析式为y=﹣.
    ∵点A(﹣4,n)在y=﹣上,
    ∴n=2.
    ∴A(﹣4,2).
    ∵y=kx+b经过A(﹣4,2),B(2,﹣4),
    ∴,
    解之得.
    ∴一次函数的解析式为y=﹣x﹣2.
    (2)∵C是直线AB与x轴的交点,
    ∴当y=0时,x=﹣2.
    ∴点C(﹣2,0).
    ∴OC=2.
    ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
    (3)不等式的解集为:﹣4<x<0或x>2.
    23、(1)见解析;(2)PE=4.
    【解析】
    (1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
    (2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
    【详解】
    解:(1)证明:∵BC是⊙O的直径,

    ∴∠BDC=90°,∴∠BCD+∠B=90°,
    ∵∠ACB=90°,
    ∴∠BCD+∠ACD=90°,
    ∴∠ACD=∠B,
    ∵∠DEC=∠B,
    ∴∠ACD=∠DEC
    (2)证明:连结OE

    ∵E为BD弧的中点.
    ∴∠DCE=∠BCE
    ∵OC=OE
    ∴∠BCE=∠OEC
    ∴∠DCE=∠OEC
    ∴OE∥CD
    ∴△POE∽△PCD,

    ∵PB=BO,DE=2
    ∴PB=BO=OC


    ∴PE=4
    【点睛】
    本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
    24、(1)y;(2)yx+1.
    【解析】
    (1)把A的坐标代入反比例函数的解析式即可求得;
    (2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
    【详解】
    (1)由题意得:k=xy=2×3=6,
    ∴反比例函数的解析式为y;
    (2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),

    ∵反比例函数y的图象经过点B(a,b),
    ∴b,
    ∴AD=3,
    ∴S△ABCBC•ADa(3)=6,
    解得a=6,
    ∴b1,
    ∴B(6,1),
    设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
    ,解得:,
    所以直线AB的解析式为yx+1.
    【点睛】
    本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.

    相关试卷

    云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。

    山东省德州市经开区重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份山东省德州市经开区重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。

    宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map