2021-2022学年内蒙古杭锦后旗第六中学十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和 的长分别为( )
A.2, B.2 ,π C., D.2,
2.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( )
年龄
13
14
15
25
28
30
35
其他
人数
30
533
17
12
20
9
2
3
A.平均数 B.众数 C.方差 D.标准差
3.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A. B. C. D.
4.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)
A.30.6米 B.32.1 米 C.37.9米 D.39.4米
5.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A. B. C. D.
6.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米)
2.10
2.20
2.25
2.30
2.35
2.40
2.45
2.50
人数
2
3
2
4
5
2
1
1
则下列叙述正确的是( )
A.这些运动员成绩的众数是 5
B.这些运动员成绩的中位数是 2.30
C.这些运动员的平均成绩是 2.25
D.这些运动员成绩的方差是 0.0725
7.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
8.下列命题中,正确的是( )
A.菱形的对角线相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.正方形的对角线不能相等
D.正方形的对角线相等且互相垂直
9.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )
A. B.
C. D.
10.下列图案中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.一个正多边形的一个外角为30°,则它的内角和为_____.
12.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.
13.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
(1)OM的长等于_______;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
14.下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
其中合理的有______(只填写序号).
15.计算(2a)3的结果等于__.
16.如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=,那么向量用向量、表示为_____.
17.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
三、解答题(共7小题,满分69分)
18.(10分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
19.(5分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
20.(8分)(1)(﹣2)2+2sin 45°﹣
(2)解不等式组,并将其解集在如图所示的数轴上表示出来.
21.(10分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
22.(10分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.
解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.
23.(12分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
24.(14分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:连接OB,
∵OB=4,
∴BM=2,
∴OM=2,,
故选D.
考点:1正多边形和圆;2.弧长的计算.
2、B
【解析】
分析:根据平均数的意义,众数的意义,方差的意义进行选择.
详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
故选B.
点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
3、A
【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【详解】
∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<,
故选A.
【点睛】
本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
4、D
【解析】
解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.
5、C
【解析】
根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.
【详解】
A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
满足ab<0,
∴a−b>0,
∴反比例函数y= 的图象过一、三象限,
所以此选项不正确;
B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,
满足ab<0,
∴a−b<0,
∴反比例函数y=的图象过二、四象限,
所以此选项不正确;
C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
满足ab<0,
∴a−b>0,
∴反比例函数y=的图象过一、三象限,
所以此选项正确;
D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,
满足ab>0,与已知相矛盾
所以此选项不正确;
故选C.
【点睛】
此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小
6、B
【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是 2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
7、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
8、D
【解析】
根据菱形,平行四边形,正方形的性质定理判断即可.
【详解】
A.菱形的对角线不一定相等, A 错误;
B.平行四边形不是轴对称图形,是中心对称图形,B 错误;
C. 正方形的对角线相等,C错误;
D.正方形的对角线相等且互相垂直,D 正确; 故选:D.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
9、A
【解析】
根据平行线分线段成比例定理逐项分析即可.
【详解】
A.∵,
∴,,
∴,故A正确;
B. ∵,
∴,故B不正确;
C. ∵,
∴ ,故C不正确;
D. ∵,
∴,故D不正确;
故选A.
【点睛】
本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
10、D
【解析】
分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.
详解:A.是轴对称图形,也是中心对称图形,故此选项错误;
B.不是轴对称图形,也不是中心对称图形,故此选项错误;
C.不是轴对称图形,是中心对称图形,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
二、填空题(共7小题,每小题3分,满分21分)
11、1800°
【解析】
试题分析:这个正多边形的边数为=12,
所以这个正多边形的内角和为(12﹣2)×180°=1800°.
故答案为1800°.
考点:多边形内角与外角.
12、
【解析】
根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
【详解】
第一个图中有8根火柴棒组成,
第二个图中有8+6个火柴棒组成,
第三个图中有8+2×6个火柴组成,
……
∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
故答案为6n+2
【点睛】
本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.
13、(1)4;(2)见解析;
【解析】
解:(1)由勾股定理可得OM的长度
(2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
【详解】
(1)OM==4;
故答案为4.
(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
∴PA2+PB2=4(a﹣)2+,
∵0≤a≤4,
∴当a=时,PA2+PB2 取得最小值,
综上,需作出点P满足线段OP的长=;
取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
则点P即为所求.
【点睛】(1) 根据勾股定理即可得到结论;
(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
14、②③
【解析】
大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.
【详解】
解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是,此结论正确;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;
故答案为:②③.
【点睛】
本题考查了概率的意义,解题的关键在于掌握计算公式.
15、8
【解析】
试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
考点:(1)、幂的乘方;(2)、积的乘方
16、+2
【解析】
根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.
【详解】
如图,连接BD,FC,
∵四边形ABCD是平行四边形,
∴DC∥AB,DC=AB.
∴△DCE∽△FBE.
又E是边BC的中点,
∴,
∴EC=BE,即点E是DF的中点,
∴四边形DBFC是平行四边形,
∴DC=BF,故AF=2AB=2DC,
∴=+=+2=+2.
故答案是:+2.
【点睛】
此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.
17、x≠2 x≥3
【解析】
根据分式的意义和二次根式的意义,分别求解.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2;
根据二次根式的意义得2x-6≥0,解得x≥3.
故答案为: x≠2, x≥3.
【点睛】
数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
三、解答题(共7小题,满分69分)
18、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
19、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
20、(1)4﹣5;﹣<x≤2,在数轴上表示见解析
【解析】
(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;
(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.
【详解】
解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;
(2),
解①得:x>﹣,
解②得:x≤2,
不等式组的解集为:﹣<x≤2,
在数轴上表示为:
.
【点睛】
此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.
21、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)7x1+4x+4;(1)55.
【解析】
(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;
(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.
【详解】
解:
(1)纸片①上的代数式为:
(4x1+5x+6)+(3x1﹣x﹣1)
=4x1+5x+6+3x1-x-1
=7x1+4x+4
(1)解方程:1x=﹣x﹣9,解得x=﹣3
代入纸片①上的代数式得
7x1+4x+4
=7×(-3)²+4×(-3)+4
=63-11+4=55
即纸片①上代数式的值为55.
【点睛】
本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.
23、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
24、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
2021-2022学年武汉广雅初级中学十校联考最后数学试题含解析: 这是一份2021-2022学年武汉广雅初级中学十校联考最后数学试题含解析,共16页。试卷主要包含了下列计算正确的是,化简的结果是等内容,欢迎下载使用。
广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析: 这是一份广东省佛山市石门中学2021-2022学年十校联考最后数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,的值是,﹣3的绝对值是等内容,欢迎下载使用。
包头市和平中学2021-2022学年十校联考最后数学试题含解析: 这是一份包头市和平中学2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了估计的值在等内容,欢迎下载使用。