2021-2022学年辽宁省抚顺市抚顺县毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知点,与点关于轴对称的点的坐标是( )
A. B. C. D.
2.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
A. B. C. D.
3.cos45°的值是( )
A. B. C. D.1
4.如图所示的正方体的展开图是( )
A. B. C. D.
5.如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( )
(A)33 (B)34 (C)35 (D)36
6.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A.(,2) B.(4,1) C.(4,) D.(4,)
7.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
8.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
9.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
成绩(米)
人数
则这名运动员成绩的中位数、众数分别是( )
A. B. C., D.
10.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
11.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
12.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.
14.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)
15.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.
16.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
17.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.
18.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
20.(6分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.
21.(6分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
22.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
23.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=3,求弦AD的长.
24.(10分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
(1)当为t何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.
25.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
26.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?
27.(12分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
(1)如图1,当0<t<2时,求证:DF∥CB;
(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
【详解】
解:点,与点关于轴对称的点的坐标是,
故选:C.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
2、A
【解析】
根据轴对称图形的概念求解.
解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
故选A.
“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
4、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
5、D
【解析】
试题分析:过点E作EM⊥OA,垂足为M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;
故选D.
考点:反比例函数综合题.
6、D
【解析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
【详解】
解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),
故选:D.
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
7、C
【解析】
试题分析:28000=1.1×1.故选C.
考点:科学记数法—表示较大的数.
8、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
9、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
10、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
11、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
12、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:135000=1.35×105
故选B.
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、k<5且k≠1.
【解析】
试题解析:∵关于x的一元二次方程有两个不相等的实数根,
解得:且
故答案为且
14、18π
【解析】
根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
【详解】
解:∵正六边形的内角为=120°,
∴扇形的圆心角为360°−120°=240°,
∴“三叶草”图案中阴影部分的面积为=18π,
故答案为18π.
【点睛】
此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
15、x1=1,x2=﹣1.
【解析】
直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
【详解】
解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
∴抛物线与x轴的另一交点坐标为(﹣1,0),
∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
故本题答案为:x1=1,x2=﹣1.
【点睛】
本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
16、
【解析】
摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
故答案是:.
17、﹣4.
【解析】
作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
【详解】
解:作AN⊥x轴于N,如图所示:
∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
∴可设A(x,﹣x)(x<0),
在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
解得:x=﹣2,
∴A(﹣2,2),
代入y=得:k=﹣2×2=﹣4;
故答案为﹣4.
【点睛】
本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
18、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
【解析】
(1)根据整式加减法则可求出二次项系数;
(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
【详解】
(1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
(2)A+C=,且A=,C=4,AC=
【点睛】
本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
20、(1);(2)P在第二象限,Q在第三象限.
【解析】
试题分析:(1)求出点B坐标即可解决问题;
(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
【解析】
(1)只需运用待定系数法就可求出二次函数的解析式;
(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
【详解】
(1)把A(1,0),B(8,6)代入,得
解得:
∴二次函数的解析式为;
(1)由,得
二次函数图象的顶点坐标为(4,﹣1).
令y=0,得,
解得:x1=1,x1=6,
∴D点的坐标为(6,0);
(3)二次函数的对称轴上存在一点C,使得的周长最小.
连接CA,如图,
∵点C在二次函数的对称轴x=4上,
∴xC=4,CA=CD,
∴的周长=CD+CB+BD=CA+CB+BD,
根据“两点之间,线段最短”,可得
当点A、C、B三点共线时,CA+CB最小,
此时,由于BD是定值,因此的周长最小.
设直线AB的解析式为y=mx+n,
把A(1,0)、B(8,6)代入y=mx+n,得
解得:
∴直线AB的解析式为y=x﹣1.
当x=4时,y=4﹣1=1,
∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.
【点睛】
本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
22、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
【解析】
(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;
(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.
【详解】
解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.
∴y1=﹣x+1.
设y2=a(x﹣6)2+1,把(3,4)代入得,
4=a(3﹣6)2+1,解得a=.
∴y2=(x﹣6)2+1,即y2=x2﹣4x+2.
(2)收益W=y1﹣y2,
=﹣x+1﹣(x2﹣4x+2)
=﹣(x﹣5)2+,
∵a=﹣<0,
∴当x=5时,W最大值=.
故5月出售每千克收益最大,最大为元.
【点睛】
本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法
23、(1)证明见解析(2)
【解析】
(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
【详解】
(1)证明:连结OC,如图,
∵AD平分∠EAC,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠3=∠2,
∴OD∥AE,
∵AE⊥DC,
∴OD⊥CE,
∴CE是⊙O的切线;
(2)∵∠CDO=∠ADB=90°,
∴∠2=∠CDB=∠1,∵∠C=∠C,
∴△CDB∽△CAD,
∴,
∴CD2=CB•CA,
∴(3)2=3CA,
∴CA=6,
∴AB=CA﹣BC=3,,设BD=k,AD=2k,
在Rt△ADB中,2k2+4k2=5,
∴k=,
∴AD=.
24、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形
【解析】
(1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;
(2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;
【详解】
(1)在Rt△ABC中,AB===10,
BP=2t,AQ=t,则AP=10﹣2t,
∵PQ∥BC,
∴△APQ∽△ABC,
∴=,即=,
解得t=,
∴当t=时,PQ∥BC.
(2)过点P作PD⊥AC于D,则有△APD∽△ABC,
∴=,即=,
∴PD=6﹣t,
∴y=t(6﹣t)=﹣(t﹣)2+,
∴当t=时,y有最大值为.
(3)存在.
理由:连接PP′,交AC于点O.
∵四边形PQP′C为菱形,
∴OC=CQ,
∵△APO∽△ABC,
∴=,即=,
∴OA=(5﹣t),
∴8﹣(5﹣t)=(8﹣t),
解得t=,
∴当t=时,四边形PQP′C为菱形.
【点睛】
本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.
25、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
26、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(300﹣100)÷20=10(米/分钟),
b=15÷1×2=30,
故答案为10,30;
(2)当0≤x≤2时,y=15x;
当x≥2时,y=30+10×3(x﹣2)=30x﹣30,
当y=30x﹣30=300时,x=11,
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100﹣(30x﹣30)=50时,解得:x=4,
当30x﹣30﹣(10x+100)=50时,解得:x=9,
当300﹣(10x+100)=50时,解得:x=15,
答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【点睛】
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
27、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.
【详解】
(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).
【点睛】
本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
辽宁省沈阳市一三四中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份辽宁省沈阳市一三四中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,有一组数据,已知点A,若2<<3,则a的值可以是等内容,欢迎下载使用。
2022年辽宁省抚顺市新抚区重点达标名校毕业升学考试模拟卷数学卷含解析: 这是一份2022年辽宁省抚顺市新抚区重点达标名校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了下列各式计算正确的是,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
2021-2022学年辽宁省辽阳市毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年辽宁省辽阳市毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。