开学活动
搜索
    上传资料 赚现金

    2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析

    2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析第1页
    2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析第2页
    2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2021-2022学年江苏省通州区金郊初级中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了二次函数y=ax2+bx+c,魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是(  )

    A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
    C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
    2.计算1+2+22+23+…+22010的结果是( )
    A.22011–1 B.22011+1
    C. D.
    3.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )

    A. B. C. D
    4.多项式ax2﹣4ax﹣12a因式分解正确的是( )
    A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
    5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+ )x+c=0(a≠0)的两根之和(  )

    A.大于0 B.等于0 C.小于0 D.不能确定
    6.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    7.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是(  )

    A.0.5 B.1 C.3 D.π
    8.已知A(,),B(2,)两点在双曲线上,且,则m的取
    值范围是( )
    A. B. C. D.
    9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为(  )

    A.4 B..5 C.6 D.8
    10.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
    A. B.1 C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    12.将直尺和直角三角尺按如图方式摆放.若,,则________.

    13.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.

    14.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
    15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=  ▲ .

    16.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .
    17.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
    (1)线段BE与AF的位置关系是   ,=   .
    (2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
    (3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.

    三、解答题(共7小题,满分69分)
    18.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

    19.(5分)如图,已知,,.求证:.

    20.(8分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    型号
    载客量
    租金单价
    A
    30人/辆
    380元/辆
    B
    20人/辆
    280元/辆
    注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
    21.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
    (1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
    (2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.

    23.(12分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.

    24.(14分)先化简,再求值:(x﹣2﹣)÷,其中x=.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.
    【详解】
    解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;
    B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;
    C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
    D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.
    故选:A.
    【点睛】
    此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.
    2、A
    【解析】
    可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
    【详解】
    设S=1+2+22+23+…+22010①
    则2S=2+22+23+…+22010+22011②
    ②-①得S=22011-1.
    故选A.
    【点睛】
    本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
    3、D
    【解析】
    先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
    【详解】
    由题意得,2x+y=10,
    所以,y=-2x+10,
    由三角形的三边关系得,,
    解不等式①得,x>2.5,
    解不等式②的,x<5,
    所以,不等式组的解集是2.5<x<5,
    正确反映y与x之间函数关系的图象是D选项图象.
    故选:D.
    4、A
    【解析】
    试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
    解:ax2﹣4ax﹣12a
    =a(x2﹣4x﹣12)
    =a(x﹣6)(x+2).
    故答案为a(x﹣6)(x+2).
    点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
    5、C
    【解析】
    设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.
    【详解】
    解:设的两根为x1,x2,
    ∵由二次函数的图象可知,,

    设方程的两根为m,n,则
    .
    故选C.
    【点睛】
    本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
    6、B
    【解析】
    【分析】根据同一时刻物高与影长成正比可得出结论.
    【详解】设竹竿的长度为x尺,
    ∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
    ∴,
    解得x=45(尺),
    故选B.
    【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
    7、C
    【解析】
    连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
    【详解】
    连接OC、OD,

    ∵六边形ABCDEF是正六边形,
    ∴∠COD=60°,又OC=OD,
    ∴△COD是等边三角形,
    ∴OC=CD,
    正六边形的周长:圆的直径=6CD:2CD=3,
    故选:C.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
    8、D
    【解析】
    ∵A(,),B(2,)两点在双曲线上,
    ∴根据点在曲线上,点的坐标满足方程的关系,得.
    ∵,∴,解得.故选D.
    【详解】
    请在此输入详解!
    9、C
    【解析】
    解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
    ,
    即,
    解得EF=6,
    故选C.
    10、A
    【解析】
    ∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,
    ∴从四张卡片中任取一张,恰好是中心对称图形的概率=.
    故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、m>-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    12、80°.
    【解析】
    由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.
    【详解】
    解:如图所示,依题意得:∠4=∠3,
    ∵∠4=∠2+∠1=80°
    ∴∠3=80°.
    故答案为80°.

    【点睛】
    本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.
    13、80
    【解析】
    【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
    【详解】由图可知AQI在0~50的频数为10,
    所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
    故答案为80
    【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
    14、60°.
    【解析】
    先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
    【详解】
    ∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,
    ∴∠A=∠B=60°.
    ∴∠C=180°-∠A-∠B=180°-60°-60°=60°.
    故答案为60°.
    【点睛】
    本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
    15、
    【解析】垂径定理,勾股定理,锐角三角函数的定义。
    【分析】如图,

    设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:

    16、3.55×1.
    【解析】
    科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
    【详解】
    3550000=3.55×1,
    故答案是:3.55×1.
    【点睛】
    考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
    17、(1)互相垂直;;(2)结论仍然成立,证明见解析;(3)135°.
    【解析】
    (1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;
    (2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;
    (3)过点D作DH⊥BC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.
    【详解】
    解:(1)如图1,线段BE与AF的位置关系是互相垂直;
    ∵∠ACB=90°,BC=2,∠A=30°,
    ∴AC=2,
    ∵点E,F分别是线段BC,AC的中点,
    ∴=;
    (2))如图2,∵点E,F分别是线段BC,AC的中点,

    ∴EC=BC,FC=AC,
    ∴,
    ∵∠BCE=∠ACF=α,
    ∴△BEC∽△AFC,
    ∴,
    ∴∠1=∠2,
    延长BE交AC于点O,交AF于点M
    ∵∠BOC=∠AOM,∠1=∠2
    ∴∠BCO=∠AMO=90°
    ∴BE⊥AF;
    (3)如图3,

    ∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°
    过点D作DH⊥BC于H∴DB=4-(6-2)=2-2,
    ∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,
    ∴CH=BH,∴∠HCD=45°,
    ∴∠DCA=45°,α=180°-45°=135°.

    三、解答题(共7小题,满分69分)
    18、(1);(2).
    【解析】
    (1)直接根据概率公式求解即可;
    (2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.
    【详解】
    解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,
    ∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;
    (2)画树状图:

    共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,
    则甲、乙两位嘉宾能分为同队的概率是.
    19、证明见解析.
    【解析】
    根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论.
    【详解】
    证明:,

    即,
    在和中,



    【点睛】
    此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.
    20、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    【解析】
    (1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
    B两种车至少要能坐1441人即可得取x的取值范围;
    (2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
    【详解】
    (1)由题意得y=380x+280(62-x)=100x+17360,
    ∵30x+20(62-x)≥1441,
    ∴x≥20.1,∴21≤x≤62且x为整数;
    (2)由题意得100x+17360≤21940,
    解得x≤45.8,∴21≤x≤45且x为整数,
    ∴共有25种租车方案,
    ∵k=100>0,∴y随x的增大而增大,
    当x=21时,y有最小值, y最小=100×21+17360=19460,
    故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    【点睛】
    本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
    21、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
    【解析】
    (1)根据图形平移的性质画出平移后的△DEC即可;
    (2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
    【详解】
    (1)如图所示;

    (2)四边形OCED是菱形.
    理由:∵△DEC由△AOB平移而成,
    ∴AC∥DE,BD∥CE,OA=DE,OB=CE,
    ∴四边形OCED是平行四边形.
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴DE=CE,
    ∴四边形OCED是菱形.
    【点睛】
    本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
    23、(1)详见解析;(2).
    【解析】
    ∵四边形ABCD是矩形,
    ∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
    ∴∠EAD=∠AFB,
    ∵DE⊥AF,
    ∴∠AED=90°,
    在△ADE和△FAB中,
    ∴△ADE≌△FAB(AAS),
    ∴AE=BF=1
    ∵BF=FC=1
    ∴BC=AD=2
    故在Rt△ADE中,∠ADE=30°,DE=,
    ∴的长==.
    24、
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式,


    当时,原式
    【点睛】
    本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.

    相关试卷

    2022年江苏省通州区金郊初级中学中考考前最后一卷数学试卷含解析:

    这是一份2022年江苏省通州区金郊初级中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列计算正确的是等内容,欢迎下载使用。

    2022届江苏省盐城市洋马初级中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022届江苏省盐城市洋马初级中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map