数学九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时教学设计
展开第3课时 切线长定理
【知识与技能】
理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念.
【过程与方法】
利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念.
【情感态度】
经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力.
【教学重点】
切线长定理及其应用.
【教学难点】
内切圆、内心的概念及运用.
一、情境导入,初步认识
探究 如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是⊙O半径吗?(2)PB是⊙O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系?
学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题.
分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB;∠APO=∠BPO.而PB经过半径OB的外端点,∴PB是⊙O的切线.
二、思考探究,获取新知
1.切线长的定义及性质
切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长.
我们知道圆的切线是直线,而切线长是一条线段长,不是直线.
如右图中,PA、PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP,∴PA=PB,∠AOP=∠BOP,∠APO=∠BPO.
由此我们得到切线长定理:
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
【教学说明】这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线.②两条切线长相等.③这一点和圆心的连线平分两条切线的夹角.
猜想:在上图中连接AB,则OP与AB有怎样的关系?
分析:∵PA、PB是⊙O的切线,A、B是切点.∴PA=PB,∠OPA=∠OPB,∴OP⊥AB,且OP平分AB.
2.三角形的内切圆
思考 如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?
【教学说明】引导学生分析作图的关键,假设圆已经作出,圆心应满足什么条件,怎样根据这些条件确定圆心?圆心确定后,如何确定半径?教师引导,学生要互相讨论来解决这些问题.
假设符合条件的圆已作出,那么这个圆与△ABC的三边都相切,这个圆的圆心到△ABC三边的距离都等于半径.又因为我们在角平分线这节中学过,三角形的三条角平分线交于一点,并且这个点到三条边的距离相等.因此,在△ABC中,作∠B,∠C的角平分线BM和CN,它们相交于点I,则点I到AB、BC、AC的距离相等.∴以I为圆心,点I到BC的距离ID为半径作圆,则⊙I与△ABC三边相切.
内切圆:与三角形各边都相切的圆叫做三角形的内切圆.
内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.
三角形的内心到三角形三边的距离相等.
【教学说明】要让学生对照图形理解三角形的内切圆的概念,并与三角形的外接圆进行比较.“接”和“切”是说明多边形的顶点和边与圆的关系;多边形的顶点都在圆上叫“接”,多边形的边都与圆相切叫“切”.
三、典例精析,掌握新知
例1 教材第100页,例2(本题较简单,教师指点,可由学生自主完成)
例2 如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,连接OP,交⊙O于C,若PA=6.PC=23.求⊙O的半径OA及两切线PA、PB的夹角.
分析:连接OA,设AO=x,在Rt△AOP中利用勾股定理求出x,由切线长定理知∠APO=12∠APB.求出∠APO就可得∠APB.
解:连接AO,∵PA是⊙O的切线,∴PA⊥OA,△PAO为直角三角形.
设OA=x,则OC=x,在Rt△PAO中,OA2+PA2=OP2,∴x2+62=(2+x)2,解得:x=2.∴OA=2,OP=4,∴∠AOP=60°,∠APO=30°.
∴∠APB=2∠APO=2×30°=60°.∴⊙O的半径OA为2,两切线PA、PB的夹角为60°.
【教学说明】例1、例2是利用切线长定理进行计算,在解题过程中,我们常常用方程来解决几何问题.
例3如图,在△ABC中,I是内心,∠BIC=100°,则∠A=____.
分析:∵I是内心.
∴BI,CI分别是∠ABC,∠ACB的平分线.
∴∠ABC+∠ACB=2(∠IBC+∠ICB).
又∵∠BIC=100°,∴∠IBC+∠ICB=80°.
∴∠ABC+∠ACB=160°.
∴∠A=180°-160°=20°.
【教学说明】指导学生利用三角形内心的性质解决问题.
四、运用新知,深化理解
课本第100页练习1、2题.
【教学说明】教师引导学生完成课本练习.
五、师生互动,课堂小结
这节课学习了哪几个重要知识点?你有哪些疑惑?
【教学说明】学生自主交流并发言总结,教师予以补充和点评,让学生完整地领会本堂课的知识要点.
1.布置作业:从教材“习题24.2”中选取.
2.完成练习册中本课时 练习的“课后作业”部分.
本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.
初中数学人教版九年级上册24.2.2 直线和圆的位置关系第3课时教学设计: 这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系第3课时教学设计,共16页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
数学24.2.2 直线和圆的位置关系优秀第2课时教案: 这是一份数学24.2.2 直线和圆的位置关系优秀第2课时教案,共10页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
人教版九年级上册24.2.2 直线和圆的位置关系精品第3课时教学设计: 这是一份人教版九年级上册24.2.2 直线和圆的位置关系精品第3课时教学设计,共6页。教案主要包含了【教材分析】,【教学流程】,【板书设计】,【教后反思】等内容,欢迎下载使用。