年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析

    2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析第1页
    2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析第2页
    2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析

    展开

    这是一份2021-2022学年山西省(朔州地区)中考数学适应性模拟试题含解析,共19页。试卷主要包含了下列图形不是正方体展开图的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为(  )
    A.116 B.120 C.121 D.126
    2.﹣2的绝对值是( )
    A.2 B. C. D.
    3.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    4.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )

    A. B. C. D.
    5.下面的图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6.下列图形不是正方体展开图的是(  )
    A. B.
    C. D.
    7.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )
    A. B. C. D.
    8.如图,在中,点D为AC边上一点,则CD的长为( )

    A.1 B. C.2 D.
    9.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有(  )
    A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
    C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
    10.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?(  )

    A.1 B.2 C.2﹣2 D.4﹣2
    二、填空题(共7小题,每小题3分,满分21分)
    11.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
    12.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    13.化简:______.
    14.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .

    15.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.

    16.使分式的值为0,这时x=_____.
    17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)阅读下列材料:
    数学课上老师布置一道作图题:
    已知:直线l和l外一点P.
    求作:过点P的直线m,使得m∥l.
    小东的作法如下:
    作法:如图2,
    (1)在直线l上任取点A,连接PA;
    (2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;
    (3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;
    (4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.
    老师说:“小东的作法是正确的.”
    请回答:小东的作图依据是________.

    19.(5分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
    20.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.
    (1)求,,的值;
    (2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.

    21.(10分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
    收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):
    30 60 81 50 40 110 130 146 90 100
    60 81 120 140 70 81 10 20 100 81
    整理数据 按如下分段整理样本数据并补全表格:
    课外阅读时间(min)




    等级
    D
    C
    B
    A
    人数
    3

    8

    分析数据 补全下列表格中的统计量:
    平均数
    中位数
    众数
    80


    得出结论
    (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ;
    (2)如果该校现有学生400人,估计等级为“”的学生有多少名?
    (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?
    22.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为   ;若点D的坐标为(4,n).
    ①求反比例函数y=的表达式;
    ②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

    23.(12分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?
    24.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
    (1)求证:DF是BF和CF的比例中项;
    (2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.
    【详解】
    甲所写的数为 1,3,1,7,…,49,…;乙所写的数为 1,6,11,16,…,
    设甲所写的第n个数为49,
    根据题意得:49=1+(n﹣1)×2,
    整理得:2(n﹣1)=48,即n﹣1=24,
    解得:n=21,
    则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,
    故选:C.
    【点睛】
    考查了有理数的混合运算,弄清题中的规律是解本题的关键.
    2、A
    【解析】
    分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
    3、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    4、B
    【解析】
    先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
    【详解】
    ∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
    ∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
    故选B.
    【点睛】
    本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
    5、B
    【解析】试题解析:A. 是轴对称图形但不是中心对称图形
    B.既是轴对称图形又是中心对称图形;
    C.是中心对称图形,但不是轴对称图形;
    D.是轴对称图形不是中心对称图形;
    故选B.
    6、B
    【解析】
    由平面图形的折叠及正方体的展开图解题.
    【详解】
    A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
    故选B.
    【点睛】
    此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
    7、A
    【解析】
    根据轴对称图形的概念判断即可.
    【详解】
    A、是轴对称图形;
    B、不是轴对称图形;
    C、不是轴对称图形;
    D、不是轴对称图形.
    故选:A.
    【点睛】
    本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    8、C
    【解析】
    根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
    【详解】
    ∵∠DBC=∠A,∠C=∠C,
    ∴△BCD∽△ACB,


    ∴CD=2.
    故选:C.
    【点睛】
    主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    9、C
    【解析】
    设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
    【详解】
    解:设房价比定价180元增加x元,
    根据题意,得(180+x﹣20)(50﹣)=1.
    故选:C.
    【点睛】
    此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
    10、C
    【解析】
    先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.
    【详解】
    解:如图,连接PF,QF,PC,QC

    ∵P、Q两点分别为△ACF、△CEF的内心,
    ∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,
    ∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,
    ∴∠PFC=∠QFC=30°,
    同理,∠PCF=∠QCF
    ∴PQ⊥CF,
    ∴△PQF是等边三角形,
    ∴PQ=2PG;
    易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,
    ∴AC=2,AF=2,CF=2AF=4,
    ∴S△ACF=AF×AC=×2×2=2,
    过点P作PM⊥AF,PN⊥AC,PQ交CF于G,
    ∵点P是△ACF的内心,
    ∴PM=PN=PG,
    ∴S△ACF=S△PAF+S△PAC+S△PCF
    =AF×PM+AC×PN+CF×PG
    =×2×PG+×2×PG+×4×PG
    =(1++2)PG
    =(3+)PG
    =2,
    ∴PG==,
    ∴PQ=2PG=2()=2-2.
    故选C.
    【点睛】
    本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.

    二、填空题(共7小题,每小题3分,满分21分)
    11、m≥且m≠1.
    【解析】
    根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m﹣1≠0且
    解得且m≠1.
    故答案为: 且m≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    12、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    13、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    14、1
    【解析】
    试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
    考点:三角形相似的应用.
    15、113°或92°
    【解析】
    解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.
    ①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;
    ②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.
    故答案为113°或92°.
    16、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    17、(673,0)
    【解析】
    由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.
    【详解】
    解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,
    ∵2019÷3=673,
    ∴P2019 (673,0)
    则点P2019的坐标是 (673,0).
    故答案为 (673,0).
    【点睛】
    本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.

    三、解答题(共7小题,满分69分)
    18、内错角相等,两直线平行
    【解析】
    根据内错角相等,两直线平行即可判断.
    【详解】
    ∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).
    故答案为:内错角相等,两直线平行.
    【点睛】
    本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
    19、
    【解析】
    根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.
    【详解】
    如图:

    由已知可得:∠A=30°,∠B=60°,
    ∴△ABC为直角三角形,且∠C=90°,AB=10,
    ∴BC=AB·sin30°=10=5,
    AC=AB·cos30°=10=,
    ∴S△ABC=.
    【点睛】
    本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
    20、(1)m=4, n=1,k=3.(2)3.
    【解析】
    (1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;
    (2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.
    【详解】
    解:(1)把点,分别代入直线中得:
    -4+m=0,
    m=4,
    ∴直线解析式为.
    把代入得:
    n=-3+4=1.
    ∴点C的坐标为(3,1)
    把(3,1)代入函数得:

    解得:k=3.
    ∴m=4, n=1,k=3.
    (2)如图,设点B的坐标为(0,y)则y=-0+4=4
    ∴点B的坐标是(0,4)
    当y=4时,
    解得,
    ∴点B’( ,4)
    ∵A’,B’是由A,B向右平移得到,
    ∴四边形AA’B’B是平行四边形,
    故四边形AA’B’B的面积=4=3.

    【点睛】
    本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.
    21、(1)填表见解析;(2)160名;(3)平均数;26本.
    【解析】
    【分析】先确定统计表中的C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;
    (1)根据统计量,结合统计表进行估计即可;
    (2)用“B”等级人数所占的比例乘以全校的学生数即可得;
    (3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.
    【详解】整理数据 按如下分段整理样本数据并补全表格:
    课外阅读时间(min)




    等级
    D
    C
    B
    A
    人数
    3
    5
    8
    4
    分析数据 补全下列表格中的统计量:
    平均数
    中位数
    众数
    80
    81
    81
    得出结论
    (1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,
    故答案为:B;
    (2) 8÷20×400=160 ∴该校等级为“”的学生有160名;
    (3) 选统计量:平均数
    80×52÷160=26 ,
    ∴该校学生每人一年平均阅读26本课外书.
    【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求解方法是关键.
    22、 (1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.
    【解析】
    (1)利用中点坐标公式即可得出结论;
    (2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
    ②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
    (1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
    【详解】
    (1)∵点C是OA的中点,A(4,4),O(0,0),
    ∴C,
    ∴C(2,2);
    故答案为(2,2);
    (2)①∵AD=1,D(4,n),
    ∴A(4,n+1),
    ∵点C是OA的中点,
    ∴C(2,),
    ∵点C,D(4,n)在双曲线上,
    ∴,
    ∴,
    ∴反比例函数解析式为;
    ②由①知,n=1,
    ∴C(2,2),D(4,1),
    设直线CD的解析式为y=ax+b,
    ∴,
    ∴,
    ∴直线CD的解析式为y=﹣x+1;
    (1)如图,由(2)知,直线CD的解析式为y=﹣x+1,

    设点E(m,﹣m+1),
    由(2)知,C(2,2),D(4,1),
    ∴2<m<4,
    ∵EF∥y轴交双曲线于F,
    ∴F(m,),
    ∴EF=﹣m+1﹣,
    ∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,
    ∵2<m<4,
    ∴m=1时,S△OEF最大,最大值为

    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.
    23、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.
    【解析】
    (1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【详解】
    解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,
    依题意,得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x+20=1.
    答:文学书的单价为40元/本,科普书的单价为1元/本.
    (2)设购进m本科普书,
    依题意,得:40×1+1m≤5000,
    解得:m≤.
    ∵m为整数,
    ∴m的最大值为2.
    答:购进1本文学书后最多还能购进2本科普书.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    24、证明见解析
    【解析】
    试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
    (2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
    由(1)可得 ,从而得 ,问题得证.
    试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
    ∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
    ∵E是AC的中点,
    ∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
    ∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
    又∵∠BFD=∠DFC,
    ∴△BFD∽△DFC,
    ∴BF:DF=DF:FC,
    ∴DF2=BF·CF;
    (2)∵AE·AC=ED·DF,
    ∴ ,
    又∵∠A=∠A,
    ∴△AEG∽△ADC,
    ∴∠AEG=∠ADC=90°,
    ∴EG∥BC,
    ∴ ,
    由(1)知△DFD∽△DFC,
    ∴ ,
    ∴ ,
    ∴EG·CF=ED·DF.

    相关试卷

    山西省朔州地区2022年中考数学猜题卷含解析:

    这是一份山西省朔州地区2022年中考数学猜题卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=﹣等内容,欢迎下载使用。

    山西省右玉教育集团达标名校2021-2022学年中考数学适应性模拟试题含解析:

    这是一份山西省右玉教育集团达标名校2021-2022学年中考数学适应性模拟试题含解析,共22页。

    2021-2022学年浙江省杭州地区达标名校中考数学适应性模拟试题含解析:

    这是一份2021-2022学年浙江省杭州地区达标名校中考数学适应性模拟试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,已知点A,-3的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map