2022届河南省商丘市虞城县求实学校中考联考数学试题含解析
展开这是一份2022届河南省商丘市虞城县求实学校中考联考数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,估计介于等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )
A.﹣4 B.7﹣4 C.6﹣ D.
2.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
3.下列运算正确的是( )
A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
4.估计介于( )
A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
5.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
6.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )
A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
7.如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )
A. B. C. D.
8.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )
A.(3,﹣4) B.(﹣3,﹣4)
C.(﹣4,﹣3) D.(﹣3,4)
9.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )
A.2 B.3 C.4 D.5
10.已知点,为是反比例函数上一点,当时,m的取值范围是( )
A. B. C. D.
11.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
12.计算x﹣2y﹣(2x+y)的结果为( )
A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
14.已知n>1,M=,N=,P=,则M、N、P的大小关系为 .
15.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)
16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.
17.如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.
18.在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.则A3的坐标为_______.
.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
20.(6分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
21.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
22.(8分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
23.(8分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
24.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
25.(10分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
26.(12分)解方程
(1);(2)
27.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵O的直径AB=2,
∴∠C=90°,
∵C是弧AB的中点,
∴,
∴AC=BC,
∴∠CAB=∠CBA=45°,
∵AE,BE分别平分∠BAC和∠ABC,
∴∠EAB=∠EBA=22.5°,
∴∠AEB=180°− (∠BAC+∠CBA)=135°,
连接EO,
∵∠EAB=∠EBA,
∴EA=EB,
∵OA=OB,
∴EO⊥AB,
∴EO为Rt△ABC内切圆半径,
∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
∴EO=−1,
∴AE2=AO2+EO2=12+(−1)2=4−2,
∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
故选:A.
2、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
3、D
【解析】
直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
【详解】
解:A、a﹣3a=﹣2a,故此选项错误;
B、(ab2)0=1,故此选项错误;
C、故此选项错误;
D、×=9,正确.
故选D.
【点睛】
此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
4、C
【解析】
解:∵,
∴,即
∴估计在2~3之间
故选C.
【点睛】
本题考查估计无理数的大小.
5、A
【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】
由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
【点睛】
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
6、C
【解析】
本题根据科学记数法进行计算.
【详解】
因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
故选C.
【点睛】
本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
7、B
【解析】
由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.
【详解】
∵四边形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD•sin60°=6×=3,
∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×3=18-9π.
故选B.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
8、A
【解析】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴点P的坐标为(3,﹣4).
故选A.
9、A
【解析】
试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.
考点:垂径定理;勾股定理.
10、A
【解析】
直接把n的值代入求出m的取值范围.
【详解】
解:∵点P(m,n),为是反比例函数y=-图象上一点,
∴当-1≤n<-1时,
∴n=-1时,m=1,n=-1时,m=1,
则m的取值范围是:1≤m<1.
故选A.
【点睛】
此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.
11、D
【解析】
试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
故答案选D.
考点:位似变换.
12、C
【解析】
原式去括号合并同类项即可得到结果.
【详解】
原式,
故选:C.
【点睛】
本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
∴从袋子中随机取出1个球,则它是黑球的概率是:
故答案为:.
【点睛】
本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
14、M>P>N
【解析】
∵n>1,
∴n-1>0,n>n-1,
∴M>1,0
,
∴,
∴M>P>N.
点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么ab,b>c,那么a>b>c.
15、π
【解析】
∵∠C=30°,
∴∠AOB=60°,
∴.即的长为.
16、
【解析】
分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
详解:由勾股定理得:= ,即(0,4).
矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
17、
【解析】
由 OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.
【详解】
∵OP 平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴
∴
∴
∵PD⊥OA,点M是OP的中点,
∴
故答案为:
【点睛】
此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.
18、A3()
【解析】
设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.
【详解】
设直线y=与x轴的交点为G,
令y=0可解得x=-4,
∴G点坐标为(-4,0),
∴OG=4,
如图1,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,
∵△A1B1O为等腰直角三角形,
∴A1D=OD,
又∵点A1在直线y=x+上,
∴=,即=,
解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,
解得A2E=
=()1,则OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F=
=()2,则OF=5+=,
∴A3(,);
故答案为(,)
【点睛】
本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
20、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.
【解析】试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=1.
甲,乙两种玩具分别是15元/件,1元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,
,
解得20≤y<2.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
21、(1),;(2)点的坐标为;(3)点的坐标为和
【解析】
(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
【详解】
解:(1)轴,,抛物线对称轴为直线
点的坐标为
解得或(舍去),
(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
直线经过点利用待定系数法可得直线的表达式为.
因为点在上,即点的坐标为
(3)存在点满足题意.设点坐标为,则
作垂足为
①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
综上所述:满足题意得点的坐标为和
考点:二次函数的综合运用.
22、这棵树CD的高度为8.7米
【解析】
试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
试题解析:∵∠CBD=∠A+∠ACB,
∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
∴∠A=∠ACB,
∴BC=AB=10(米).
在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
答:这棵树CD的高度为8.7米.
考点:解直角三角形的应用
23、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
24、(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
25、(1)详见解析;(1)①详见解析;②BP=AB.
【解析】
(1)根据要求画出图形即可;
(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
【详解】
(1)解:补全图形如图 1:
(1)①证明:连接 BD,如图 1,
∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
∴AQ=AP,∠QAP=90°,
∵四边形 ABCD 是正方形,
∴AD=AB,∠DAB=90°,
∴∠1=∠1.
∴△ADQ≌△ABP,
∴DQ=BP,∠Q=∠3,
∵在 Rt△QAP 中,∠Q+∠QPA=90°,
∴∠BPD=∠3+∠QPA=90°,
∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
∴DP1+DQ1=1AB1.
②解:结论:BP=AB.
理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.
∵△ADQ≌△ABP,△ANQ≌△ACP,
∴DQ=PB,∠AQN=∠APC=45°,
∵∠AQP=45°,
∴∠NQC=90°,
∵CD=DN,
∴DQ=CD=DN=AB,
∴PB=AB.
【点睛】
本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
26、(1),;(2),.
【解析】
(1)利用公式法求解可得;
(2)利用因式分解法求解可得.
【详解】
(1)解:∵,,,
∴,
∴,
∴,;
(2)解:原方程化为:,
因式分解得:,
整理得:,
∴或,
∴,.
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
27、(1)4;(2)详见解析.
【解析】
(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果
(2)根据如意数的定义,求出代数式,分析取值范围即可.
【详解】
解:(1)∵a=2,b=﹣1
∴c=b2+ab﹣a+7
=1+(﹣2)﹣2+7
=4
(2)∵a=3+m,b=m﹣2
∴c=b2+ab﹣a+7
=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7
=2m2﹣4m+2
=2(m﹣1)2
∵(m﹣1)2≥0
∴“如意数”c为非负数
【点睛】
本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.
相关试卷
这是一份2022-2023学年河南省商丘市虞城县求实学校八年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省商丘市虞城县求实学校数学八上期末教学质量检测试题含答案,共7页。试卷主要包含了下列图形中,对称轴最多的图形是,下列交通标志是轴对称图形的是,下列表述中,能确定准确位置的是等内容,欢迎下载使用。
这是一份河南省商丘市虞城县求实学校2022-2023学年七下数学期末调研模拟试题含答案,共7页。试卷主要包含了一个四边形,对于下列条件,的值是等内容,欢迎下载使用。