终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析

    立即下载
    加入资料篮
    2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析第1页
    2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析第2页
    2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析

    展开

    这是一份2022届黑龙江省哈尔滨道外区四校联考中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是(  )

    A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
    2.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
    A.
    B.
    C.
    D.
    3.下列方程有实数根的是( )
    A. B.
    C.x+2x−1=0 D.
    4.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    5.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    6.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

    A.①的收入去年和前年相同
    B.③的收入所占比例前年的比去年的大
    C.去年②的收入为2.8万
    D.前年年收入不止①②③三种农作物的收入
    7.如图,中,E是BC的中点,设,那么向量用向量表示为( )

    A. B. C. D.
    8.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+500
    B.1000(1+x)2=500
    C.500(1+x)2=1000
    D.1000(1+2x)=1000+500
    9.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    10.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
    A.2:3 B.3:2 C.4:9 D.9:4
    二、填空题(共7小题,每小题3分,满分21分)
    11.若一个棱柱有7个面,则它是______棱柱.
    12.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.

    13.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
    14.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.

    15.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.

    16.因式分解:3a3﹣3a=_____.
    17.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .
    三、解答题(共7小题,满分69分)
    18.(10分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°= ) 
    (1)求把手端点A到BD的距离; 
    (2)求CH的长. 

    19.(5分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

    20.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    21.(10分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.

    请你根据以上提供的信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生对数学学习喜欢程度的众数是  ,图②中所在扇形对应的圆心角是  ;
    (3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
    22.(10分)计算:sin30°•tan60°+..
    23.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
    24.(14分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
    ∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
    ∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
    2、A
    【解析】
    先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选A.
    3、C
    【解析】
    分析:根据方程解的定义,一一判断即可解决问题;
    详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;
    B.∵≥0,∴=﹣1无解,故本选项不符合题意;
    C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;
    D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.
    故选C.
    点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    4、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
    5、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    6、C
    【解析】
    A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
    B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
    C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
    D、前年年收入即为①②③三种农作物的收入,此选项错误,
    故选C.
    【点睛】
    本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    7、A
    【解析】
    根据,只要求出即可解决问题.
    【详解】
    解:四边形ABCD是平行四边形,






    故选:A.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    8、A
    【解析】
    设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.
    【详解】
    设该公司第5、6个月投放科研经费的月平均增长率为x,
    则6月份投放科研经费1000(1+x)2=1000+500,
    故选A.
    【点睛】
    考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    9、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    10、C
    【解析】
    由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
    【详解】
    ∵△ABC与△DEF相似,相似比为2:3,
    ∴这两个三角形的面积比为4:1.
    故选C.
    【点睛】
    此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5
    【解析】
    分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.
    详解:由题意可知:7-2=5.
    故答案为5.
    点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.
    12、15°、30°、60°、120°、150°、165°
    【解析】
    分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
    详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
    ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
    CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
    ②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
    CE∥AB时,∠ECB=∠B=60°.
    ③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
    在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
    ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
    点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
    13、
    【解析】
    试题分析:当n=3时,A=≈0.3178,B=1,A<B;
    当n=4时,A=≈0.2679,B=≈0.4142,A<B;
    当n=5时,A=≈0.2631,B=≈0.3178,A<B;
    当n=6时,A=≈0.2134,B=≈0.2679,A<B;
    ……
    以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
    14、1
    【解析】
    先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.
    【详解】
    解:∵BD=CD,
    ∴,
    ∴OD⊥BC,
    ∴BE=CE,
    而OA=OB,
    ∴OE为△ABC的中位线,
    ∴,
    ∴DE=OD-OE=5-3=1.
    故答案为1.

    【点睛】
    此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.
    15、
    【解析】
    点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
    【详解】
    解:∵扇形OAB的圆心角为30°,半径为1,
    ∴AB弧长=
    ∴点O到点O′所经过的路径长=
    故答案为:
    【点睛】
    本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
    16、3a(a+1)(a﹣1).
    【解析】
    首先提取公因式3a,进而利用平方差公式分解因式得出答案.
    【详解】
    解:原式=3a(a2﹣1)
    =3a(a+1)(a﹣1).
    故答案为3a(a+1)(a﹣1).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    17、6
    【解析】
    多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.
    【详解】
    正多边形的边数是:360°÷60°=6.
    正六边形的边长为2cm,
    由于正六边形可分成六个全等的等边三角形,
    且等边三角形的边长与正六边形的边长相等,
    所以正六边形的面积.
    故答案是:.
    【点睛】
    本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.

    三、解答题(共7小题,满分69分)
    18、(1)12;(2)CH的长度是10cm.
    【解析】
    (1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
    (2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
    【详解】
    解:(1)、过点A作于点N,过点M作于点Q.

    在中,.
    ∴,
    ∴,
    ∴.
    (2)、根据题意:∥.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    答:的长度是10cm .
    点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
    19、塔杆CH的高为42米
    【解析】
    作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
    【详解】
    解:如图,作BE⊥DH于点E,

    则GH=BE、BG=EH=4,
    设AH=x,则BE=GH=GA+AH=23+x,
    在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
    ∴CE=CH﹣EH=tan55°•x﹣4,
    ∵∠DBE=45°,
    ∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
    解得:x≈30,
    ∴CH=tan55°•x=1.4×30=42,
    答:塔杆CH的高为42米.
    【点睛】
    本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
    20、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    21、(1)答案见解析;(2)B,54°;(3)240人.
    【解析】
    (1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;
    (2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;
    (3)利用960乘C程度的人数所占抽查总人数的百分率即可.
    【详解】
    解:(1)被调查的学生总人数为人,
    C程度的人数为人,
    则的百分比为、的百分比为、的百分比为,
    补全图形如下:

    (2)所抽取学生对数学学习喜欢程度的众数是、图②中所在扇形对应的圆心角是.
    故答案为:;;
    (3)该年级学生中对数学学习“不太喜欢”的有人
    答:该年级学生中对数学学习“不太喜欢”的有240人.
    【点睛】
    此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
    22、
    【解析】
    试题分析:把相关的特殊三角形函数值代入进行计算即可.
    试题解析:原式=.
    23、(1)详见解析;(2).
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
    试题解析:(1)如图:

    所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
    (2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
    24、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.

    相关试卷

    2023年黑龙江省哈尔滨市道外区中考数学三模试卷(含解析):

    这是一份2023年黑龙江省哈尔滨市道外区中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省莆田涵江区四校联考2021-2022学年中考试题猜想数学试卷含解析:

    这是一份福建省莆田涵江区四校联考2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,按一定规律排列的一列数依次为,在平面直角坐标系中,点P,一元二次方程的根是等内容,欢迎下载使用。

    2022年黑龙江省哈尔滨松北区四校联考中考数学模拟试题含解析:

    这是一份2022年黑龙江省哈尔滨松北区四校联考中考数学模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,的倒数的绝对值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map