2022届湖北省恩施州市级名校十校联考最后数学试题含解析
展开
这是一份2022届湖北省恩施州市级名校十校联考最后数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,已知点A,下列交通标志是中心对称图形的为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
2.如图,在中,分别在边边上,已知,则的值为( )
A. B. C. D.
3.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
4.如图,AB∥CD,那么( )
A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补
5.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )
A.y= B.y=﹣ C.y= D.y=﹣
6.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
7.下列交通标志是中心对称图形的为( )
A. B. C. D.
8.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 B. C. D.3
9.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于( )
A. B. C. D.
10.等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
二、填空题(本大题共6个小题,每小题3分,共18分)
11.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:
则第n次的运算结果是____________(用含字母x和n的代数式表示).
12.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
13.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.
14.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.
15.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
16.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.
三、解答题(共8题,共72分)
17.(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
18.(8分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
19.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为________人,m=________,n=________;
(2)补全条形统计图;
(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
20.(8分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).
21.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.
22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
(1)△ACD与△ABC相似吗?为什么?
(2)AC2=AB•AD 成立吗?为什么?
23.(12分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).
24.如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
2、B
【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
【详解】
解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
3、C
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
解答:解:将361 000 000用科学记数法表示为3.61×1.
故选C.
4、C
【解析】
分清截线和被截线,根据平行线的性质进行解答即可.
【详解】
解:∵AB∥CD,
∴∠BAD与∠D互补,即C选项符合题意;
当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,
故选项A、B、D都不合题意,
故选:C.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
5、D
【解析】
过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
【详解】
过P,Q分别作PM⊥x轴,QN⊥x轴,
∵∠POQ=90°,
∴∠QON+∠POM=90°,
∵∠QON+∠OQN=90°,
∴∠POM=∠OQN,
由旋转可得OP=OQ,
在△QON和△OPM中,
,
∴△QON≌△OPM(AAS),
∴ON=PM,QN=OM,
设P(a,b),则有Q(-b,a),
由点P在y=上,得到ab=3,可得-ab=-3,
则点Q在y=-上.
故选D.
【点睛】
此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
6、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
7、C
【解析】
根据中心对称图形的定义即可解答.
【详解】
解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.
【点睛】
本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
8、D
【解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
故选D.
【点睛】
本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
9、B
【解析】
过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
【详解】
如图,过点P作PE⊥OA于点E,
∵OP是∠AOB的平分线,
∴PE=PM,
∵PN∥OB,
∴∠POM=∠OPN,
∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
∴=.
故选:B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
10、B
【解析】
根据一次函数的定义,可得答案.
【详解】
设等腰三角形的底角为y,顶角为x,由题意,得
x+2y=180,
所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
故选B.
【点睛】
本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:根据题意得;;;根据以上规律可得:=.
考点:规律题.
12、6.28×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
62800用科学记数法表示为6.28×1.
故答案为6.28×1.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13、1
【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.
故答案为1.
考点:一次函数图象与几何变换
14、3或6
【解析】
分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.
【详解】
设AC和BE相交于点O.
当P在OA上时,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴BD=AB=9,OB=OD=BD=.
则AO=.
在直角△OBP中,OP=.
则AP=OA-OP-;
当P在OC上时,AP=OA+OP=.
故答案是:3或6.
【点睛】
本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.
15、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
【点睛】
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
16、50°
【解析】
先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.
【详解】
∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.
【点睛】
本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.
三、解答题(共8题,共72分)
17、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
【解析】
(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
【详解】
(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
答:商家一次购买这种产品1件时,销售单价恰好为2800元;
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
当0≤x≤10时,y=(3200﹣2500)x=700x,
当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
当x>1时,y=(2800﹣2500)•x=300x;
(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
函数y=700x,y=300x均是y随x增大而增大,
而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
最低价为3200﹣5•(75﹣10)=2875元,
答:公司应将最低销售单价调整为2875元.
【点睛】
本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
18、(1)作图见解析;(2)⊙O的半径为.
【解析】
(1)作出相应的图形,如图所示;
(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
【详解】
解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB为⊙O的直径,点F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半径为.
【点睛】
此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
19、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,
(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,
补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
20、见解析
【解析】
根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.
【详解】
如图,作∠CBA=∠CAP,P点为所求.
【点睛】
此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.
21、∠DAC=20°.
【解析】
根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
【详解】
∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
【点睛】
本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
22、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
【解析】
(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
(2)根据相似三角形的性质得出比例式,再进行变形即可.
【详解】
解:(1)△ACD 与△ABC相似,
理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
∴∠ADC=∠ACB=90°,
∵∠A=∠A,
∴△ACD∽∠ABC;
(2)AC2=AB•AD成立,理由是:
∵△ACD∽∠ABC,
∴=,
∴AC2=AB•AD.
【点睛】
本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
23、 (1)见解析;(2)
【解析】
(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;
(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.
【详解】
(1)证明:∵∠B=60°,OB=OC,
∴△BOC是等边三角形,
∴∠1=∠3=60°,
∵OC平分∠AOB,
∴∠1=∠2,
∴∠2=∠3,
∴OA∥BD,
∵∠BDM=90°,
∴∠OAM=90°,
又OA为⊙O的半径,
∴AM是⊙O的切线
(2)解:连接AC,
∵∠3=60°,OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∴∠CAD=30°,
∵OC=AC=4,
∴CD=2,
∴AD=2 ,
∴S阴影=S梯形OADC﹣S扇形OAC= ×(4+2)×2﹣.
【点睛】
本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.
24、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
【解析】
解:(1)
(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
相关试卷
这是一份江西省石城县市级名校2021-2022学年十校联考最后数学试题含解析,共25页。
这是一份2022届浙江省杭州市富阳区市级名校十校联考最后数学试题含解析,共17页。
这是一份2021-2022学年江西省广丰区市级名校十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。