终身会员
搜索
    上传资料 赚现金
    2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析
    立即下载
    加入资料篮
    2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析01
    2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析02
    2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析

    展开
    这是一份2022届黑龙江省大庆市第五十七中学中考数学模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,若 || =-,则一定是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知A(,),B(2,)两点在双曲线上,且,则m的取
    值范围是( )
    A. B. C. D.
    2.反比例函数是y=的图象在(  )
    A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
    3.如图所示的两个四边形相似,则α的度数是(  )

    A.60° B.75° C.87° D.120°
    4.下列运算正确的是(  )
    A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=9
    5.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(     )
    A.2                        B.3                        C.4                                   D.5
    6.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是(  )

    A.3 B.﹣ C.﹣3 D.﹣6
    7.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是(  )
    A.75° B.60° C.45° D.30°
    8.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    9.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为(  )
    A.780×105 B.78×106 C.7.8×107 D.0.78×108
    10.若 || =-,则一定是( )
    A.非正数 B.正数 C.非负数 D.负数
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    12.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.

    13.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.

    14.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.
    15.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
    16.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
    (1)求证:BC是∠ABE的平分线;
    (2)若DC=8,⊙O的半径OA=6,求CE的长.
    18.(8分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.

    19.(8分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
    年龄组x
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    男生平均身高y
    115.2
    118.3
    122.2
    126.5
    129.6
    135.6
    140.4
    146.1
    154.8
    162.9
    168.2
    (1)该市男学生的平均身高从   岁开始增加特别迅速.
    (2)求直线AB所对应的函数表达式.
    (3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?

    20.(8分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
    (1)求一次函数的解析式;
    (2)求的面积。

    21.(8分)已知△ABC内接于⊙O,AD平分∠BAC.
    (1)如图1,求证:;
    (2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
    (3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.

    22.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
    由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    23.(12分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?
    24.如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,
    判断与的位置关系,并说明理由;若,,,求线段的长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    ∵A(,),B(2,)两点在双曲线上,
    ∴根据点在曲线上,点的坐标满足方程的关系,得.
    ∵,∴,解得.故选D.
    【详解】
    请在此输入详解!
    2、B
    【解析】
    解:∵反比例函数是y=中,k=2>0,
    ∴此函数图象的两个分支分别位于一、三象限.
    故选B.
    3、C
    【解析】
    【分析】根据相似多边形性质:对应角相等.
    【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
    故选C
    【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
    4、D
    【解析】
    直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
    【详解】
    解:A、a﹣3a=﹣2a,故此选项错误;
    B、(ab2)0=1,故此选项错误;
    C、故此选项错误;
    D、×=9,正确.
    故选D.
    【点睛】
    此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
    5、D
    【解析】
    设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
    【详解】
    设这个数是a,
    把x=1代入得:(-2+1)=1-,
    ∴1=1-,
    解得:a=1.
    故选:D.
    【点睛】
    本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
    6、C
    【解析】
    如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
    【详解】
    解:如图,作CH⊥y轴于H.

    由题意B(0,2),

    ∴CH=1,
    ∵tan∠BOC=
    ∴OH=3,
    ∴C(﹣1,3),
    把点C(﹣1,3)代入,得到k2=﹣3,
    故选C.
    【点睛】
    本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    7、C
    【解析】
    根据直角三角形两锐角互余即可解决问题.
    【详解】
    解:∵直角三角形两锐角互余,
    ∴另一个锐角的度数=90°﹣45°=45°,
    故选C.
    【点睛】
    本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
    8、B
    【解析】
    分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
    详解: 由于点P在运动中保持∠APD=90°, ∴点P的路径是一段以AD为直径的弧,
    设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
    在Rt△QDC中,QC=, ∴CP=QC-QP=,故选B.
    点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.
    9、C
    【解析】
    科学记数法记数时,主要是准确把握标准形式a×10n即可.
    【详解】
    解:78000000= 7.8×107.
    故选C.
    【点睛】
    科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.
    10、A
    【解析】
    根据绝对值的性质进行求解即可得.
    【详解】
    ∵|-x|=-x,
    又|-x|≥1,
    ∴-x≥1,
    即x≤1,
    即x是非正数,
    故选A.
    【点睛】
    本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.
    绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
    12、6n+1.
    【解析】
    寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:
    第1个图形有8根火柴棒,
    第1个图形有14=6×1+8根火柴棒,
    第3个图形有10=6×1+8根火柴棒,
    ……,
    第n个图形有6n+1根火柴棒.
    13、(2,2)
    【解析】
    分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可.
    详解:与是以点为位似中心的位似图形,,

    ,若点的坐标是,

    过点作交于点E.

    点的坐标为:
    与的相似比为,
    点的坐标为:即点的坐标为:
    故答案为:

    点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.
    14、
    【解析】
    若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.
    【详解】
    解:∵方程有两个实数根,
    ∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,
    解得:k≤且k≠1,
    故答案为k≤且k≠1.
    【点睛】
    此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    15、
    【解析】
    分析:
    根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
    详解:
    设他推车步行的时间为x分钟,根据题意可得:
    80x+250(15-x)=2900.
    故答案为80x+250(15-x)=2900.
    点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
    16、2
    【解析】
    延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.
    【详解】
    解:如图所示,

    延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.
    由勾股定理AB′=2
    ∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.
    考点:解直角三角形的应用
    点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)4.1.
    【解析】
    试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
    (2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
    试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
    (2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
    考点:切线的性质.
    18、灯杆AB的长度为2.3米.
    【解析】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.
    【详解】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.

    由题意得:∠ADE=α,∠E=45°.
    设AF=x.
    ∵∠E=45°,∴EF=AF=x.
    在Rt△ADF中,∵tan∠ADF=,∴DF==.
    ∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.
    ∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.
    答:灯杆AB的长度为2.3米.
    【点睛】
    本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.
    19、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.
    【解析】
    (1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.
    【详解】
    解:(1)由统计图可得,
    该市男学生的平均身高从 11 岁开始增加特别迅速,
    故答案为:11;
    (2)设直线AB所对应的函数表达式
    ∵图象经过点
    则,
    解得.
    即直线AB所对应的函数表达式:
    (3)设直线CD所对应的函数表达式为:,
    ,得,
    即直线CD所对应的函数表达式为:
    把代入得
    即该市18岁男生年龄组的平均身高大约是174cm左右.
    【点睛】
    此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.
    20、(1);(2)6.
    【解析】
    (1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;
    (2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.
    【详解】
    (1)当x=2时,=4,
    当y=-2时,-2=,x=-4,
    所以点A(2,4),点B(-4,-2),
    将A,B两点分别代入一次函数解析式,得

    解得:,
    所以,一次函数解析式为;
    (2)令直线AB与y轴交点为D,则OD=b=2,
    .
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.
    21、(1)证明见解析;(1)证明见解析;(3)1.
    【解析】
    (1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
    (1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
    (3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
    【详解】
    (1)如图1,连接OB、OC、OD,

    ∵∠BAD和∠BOD是所对的圆周角和圆心角,
    ∠CAD和∠COD是所对的圆周角和圆心角,
    ∴∠BOD=1∠BAD,∠COD=1∠CAD,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠BOD=∠COD,
    ∴=;
    (1)如图1,过点O作OM⊥AD于点M,

    ∴∠OMA=90°,AM=DM,
    ∵BE⊥AD于点E,CF⊥AD于点F,
    ∴∠CFM=90°,∠MEB=90°,
    ∴∠OMA=∠MEB,∠CFM=∠OMA,
    ∴OM∥BE,OM∥CF,
    ∴BE∥OM∥CF,
    ∴,
    ∵OB=OC,
    ∴=1,
    ∴FM=EM,
    ∴AM﹣FM=DM﹣EM,
    ∴DE=AF;
    (3)延长EO交AB于点H,连接CG,连接OA.

    ∵BC为⊙O直径,
    ∴∠BAC=90°,∠G=90°,
    ∴∠G=∠CFE=∠FEG=90°,
    ∴四边形CFEG是矩形,
    ∴EG=CF,
    ∵AD平分∠BAC,
    ∴∠BAF=∠CAF=×90°=45°,
    ∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
    ∠ACF=180°﹣∠CAF﹣∠AFC=45°,
    ∴∠BAF=∠ABE,∠ACF=∠CAF,
    ∴AE=BE,AF=CF,
    在Rt△ACF中,∠AFC=90°,
    ∴sin∠CAF=,即sin45°=,
    ∴CF=1×=,
    ∴EG=,
    ∴EF=1EG=1,
    ∴AE=3,
    在Rt△AEB中,∠AEB=90°,
    ∴AB==6,
    ∵AE=BE,OA=OB,
    ∴EH垂直平分AB,
    ∴BH=EH=3,
    ∵∠OHB=∠BAC,∠ABC=∠ABC
    ∴△HBO∽△ABC,
    ∴,
    ∴OH=1,
    ∴OE=EH﹣OH=3﹣1=1.
    【点睛】
    本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
    22、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    23、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元.
    【解析】
    整体分析:
    (1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.
    解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,
    由题意得,,
    解得:
    答:购买一副乒乓球拍28元,一副羽毛球拍60元.
    (2)5×28+3×60=320元
    答:购买5副乒乓球拍和3副羽毛球拍共320元.
    24、(1).理由见解析;(2).
    【解析】
    (1)根据得到∠A=∠PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;
    (2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论.
    【详解】
    (1).理由如下,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵垂直平分,
    ∴,
    ∴,
    ∴,
    ∴,
    即.
    (2)

    连接,设,
    由(1)得,,又,,
    ∵,
    ∴,
    ∴,
    解得,即.
    【点睛】
    本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键.

    相关试卷

    2024年黑龙江省大庆市中考数学模拟试卷(三)(含解析): 这是一份2024年黑龙江省大庆市中考数学模拟试卷(三)(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市五校联考中考数学模拟试卷(含解析): 这是一份2023年黑龙江省大庆市五校联考中考数学模拟试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省大庆市中考数学模拟试卷(含解析): 这是一份2023年黑龙江省大庆市中考数学模拟试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map