2022届黑龙江省绥滨农场校中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
2.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是( )
A.①②③ B.①②④ C.②③④ D.③④⑤
3.下列图形中,不是中心对称图形的是( )
A.平行四边形 B.圆 C.等边三角形 D.正六边形
4.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )
A. B. C. D.
5.比较4,,的大小,正确的是( )
A.4<< B.4<<
C.<4< D.<<4
6.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30° B.40° C.50° D.60°
7.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是( )
A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
8.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
9.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
10.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为( )
A.﹣3 B.﹣1 C.1 D.3
11.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
12.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.
14.计算:+=______.
15.已知a+ =3,则的值是_____.
16.9的算术平方根是 .
17.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
18.分解因式:x2y﹣4xy+4y=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
20.(6分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
21.(6分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.
(1)当时,求四边形的面积;
(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
22.(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)
23.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
24.(10分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).
(1)求抛物线C1 的解析式.
(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.
25.(10分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
26.(12分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
求m、n的值;求直线AC的解析式.
27.(12分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
(1)抛物线的表达式;
(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
2、C
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由图象可知:a>0,c<0,
∴ac<0,故①错误;
②由于对称轴可知:<1,
∴2a+b>0,故②正确;
③由于抛物线与x轴有两个交点,
∴△=b2﹣4ac>0,故③正确;
④由图象可知:x=1时,y=a+b+c<0,
故④正确;
⑤当x>时,y随着x的增大而增大,故⑤错误;
故选:C.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.
3、C
【解析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
4、B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:将360000000用科学记数法表示为:3.6×1.
故选:B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
根据4=<且4=>进行比较
【详解】
解:易得:4=<且4=>,
所以<4<
故选C.
【点睛】
本题主要考查开平方开立方运算。
6、B
【解析】
试题解析:∵AB∥CD,且
∴在中,
故选B.
7、C
【解析】
首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
【详解】
∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
∴1=﹣,
解得:x=﹣3,
∴P(﹣3,1),
故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.
8、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
9、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
10、D
【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.
【详解】
解:∵2x2+1x﹣1=1,
∴2x2+1x=2,
则4x2+6x﹣1=2(2x2+1x)﹣1
=2×2﹣1
=4﹣1
=1.
故本题答案为:D.
【点睛】
本题主要考查代数式的求值,运用整体代入的思想是解题的关键.
11、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
12、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中
∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y= 上,
∴a=1×1=1.
故答案是:1.
14、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
15、7
【解析】
根据完全平方公式可得:原式=.
16、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
17、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
18、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
20、(1)2400个, 10天;(2)1人.
【解析】
(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
【详解】
解:(1)解:设原计划每天生产零件x个,由题意得,
,
解得x=2400,
经检验,x=2400是原方程的根,且符合题意.
∴规定的天数为24000÷2400=10(天).
答:原计划每天生产零件2400个,规定的天数是10天.
(2)设原计划安排的工人人数为y人,由题意得,
[5×20×(1+20%)×+2400] ×(10-2)=24000,
解得,y=1.
经检验,y=1是原方程的根,且符合题意.
答:原计划安排的工人人数为1人.
【点睛】
本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.
21、(1)4;(2),;(3).
【解析】
(1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
【详解】
解:(1)过点D作DE⊥x轴于点E
当时,得到,
顶点,
∴DE=1
由,得,;
令,得;
,,,
,OC=3
.
(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,
由翻折得:,
;
,
,
轴,,
,
,
由勾股定理得:,
,
,
,
,,
,
解得:(不符合题意,舍去),;
,.
(3)原抛物线的顶点在直线上,
直线交轴于点,
如图2,过点作轴于,
;
由题意,平移后的新抛物线顶点为,解析式为,
设点,,则,,,
过点作于,于,轴于,
,
,
、分别平分,,
,
点在抛物线上,
,
根据题意得:
解得:
【点睛】
此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
22、35km
【解析】
试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.
试题解析:如图,作CH⊥AD于H.设CH=xkm,
在Rt△ACH中,∠A=37°,∵tan37°=,
∴AH=,
在Rt△CEH中,∵∠CEH=45°,
∴CH=EH=x,
∵CH⊥AD,BD⊥AD,
∴CH∥BD,
∴,
∵AC=CB,
∴AH=HD,
∴=x+5,
∴x=≈15,
∴AE=AH+HE=+15≈35km,
∴E处距离港口A有35km.
23、(1);(2).
【解析】
(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】
(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
24、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )
【解析】
(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;
(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.
【详解】
(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1
解得a=1,∴解析式为y= x2-2x-3,
(2)如图所示,对称轴为x=1,
过D1作D1H⊥x轴,
∵△CPD为等腰直角三角形,
∴△OPC≌△HD1P,
∴PH=OC=3,HD1=OP=1,∴D1(4,-1)
过点D2F⊥y轴,同理△OPC≌△FCD2,
∴FD2=3,CF=1,故D2(3,- 4)
由图可知CD1与PD2交于D3,
此时PD3⊥CD3,且PD3=CD3,
PC=,∴PD3=CD3=
故D3 ( 2,- 2 )
∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.
【点睛】
此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.
25、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
【详解】
(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,
此时D为AB边中点,AD=AC=.
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,
∵CE:CF=AC:BC,∴EF∥BC.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,∴BC=1.
∴cosA=.∴AD=AC•cosA=3×=.
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°.
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
∴此时AD=AB=×1=.
综上所述,当AC=3,BC=4时,AD的长为或.
(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
26、(1)m=-1,n=-1;(2)y=-x+
【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
【详解】
(1)∵直线与双曲线相交于A(-1,a)、B两点,
∴B点横坐标为1,即C(1,0)
∵△AOC的面积为1,
∴A(-1,1)
将A(-1,1)代入,可得m=-1,n=-1;
(2)设直线AC的解析式为y=kx+b
∵y=kx+b经过点A(-1,1)、C(1,0)
∴解得k=-,b=.
∴直线AC的解析式为y=-x+.
【点睛】
本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
27、(1);(2).
【解析】
(1)根据待定系数法即可求解;
(2)根据题意知,根据三角形面积公式列方程即可求解.
【详解】
(1)根据题意得:,
解得:,
抛物线的表达式为:;
(2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
∴抛物线的对称轴为直线,
∵抛物线与轴交于点两点且点在点左侧,
∴的横坐标为:
∴,
令,则,
解得:,
令,则,
∴点的坐标分别为,,点的坐标为,
∴,
∵,
∴,即,
解得:或,
∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
∴抛物线的表达式为或.
【点睛】
本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
2022年天津市新华圣功校中考数学猜题卷含解析: 这是一份2022年天津市新华圣功校中考数学猜题卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022年吉林省长春市五校中考数学猜题卷含解析: 这是一份2022年吉林省长春市五校中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年黑龙江省哈尔滨道外区四校联考中考数学猜题卷含解析: 这是一份2022年黑龙江省哈尔滨道外区四校联考中考数学猜题卷含解析,共20页。试卷主要包含了下列各式,估计﹣1的值为,如图,在平面直角坐标系中,A,已知一次函数y=等内容,欢迎下载使用。