开学活动
搜索
    上传资料 赚现金

    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析

    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析第1页
    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析第2页
    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列各数中,无理数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.的相反数是(  )
    A.2 B.﹣2 C.4 D.﹣
    2.下列各曲线中表示y是x的函数的是(  )
    A. B. C. D.
    3.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    4.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
    A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
    5.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为(  )

    A.16 B.14 C.12 D.10
    6.下列各数中,无理数是(  )
    A.0 B. C. D.π
    7.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为(  )

    A.30° B.40° C.50° D.60°
    8.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
    A. B. C. D.
    9.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

    A. B. C. D.
    10.如图,为的直径,为上两点,若,则的大小为(  ).

    A.60° B.50° C.40° D.20°
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.

    12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.

    13.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.

    14.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
    15.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.

    16.已知二次函数,与的部分对应值如下表所示:


    -1
    0
    1
    2
    3
    4



    6
    1
    -2
    -3
    -2
    m

    下面有四个论断:
    ①抛物线的顶点为;
    ②;
    ③关于的方程的解为;
    ④.
    其中,正确的有___________________.
    17.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    三、解答题(共7小题,满分69分)
    18.(10分)计算:(﹣2)0++4cos30°﹣|﹣|.
    19.(5分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.

    20.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
    (1)如图,若m=﹣,n=,点B的纵坐标为,
    ①求k的值;
    ②作线段CD,使CD∥AB且CD=AB,并简述作法;
    (2)若四边形ABCD为矩形,A的坐标为(1,5),
    ①求m,n的值;
    ②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是   .

    21.(10分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)

    22.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
    售价(元/台)
    月销售量(台)
    400
    200

    250
    x

    (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
    23.(12分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
    (1)函数的自变量x的取值范围是   ;
    (2)列出y与x的几组对应值.请直接写出m的值,m=   ;
    (3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
    (4)结合函数的图象,写出函数的一条性质.


    24.(14分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

    (1)求证:四边形BCFE是菱形;
    (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:根据只有符号不同的两个数是互为相反数解答即可.
    详解:的相反数是,即2.
    故选A.
    点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
    2、D
    【解析】
    根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
    故选D.
    3、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    4、D
    【解析】
    分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
    【详解】
    A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
    方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
    B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
    方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
    ∴两组数据的中位数不相等,平均数相等,B组方差更大.
    故选D.
    【点睛】
    本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
    5、B
    【解析】
    根据切线长定理进行求解即可.
    【详解】
    ∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
    ∴AF=AD=2,BD=BE,CE=CF,
    ∵BE+CE=BC=5,
    ∴BD+CF=BC=5,
    ∴△ABC的周长=2+2+5+5=14,
    故选B.
    【点睛】
    本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
    6、D
    【解析】
    利用无理数定义判断即可.
    【详解】
    解:π是无理数,
    故选:D.
    【点睛】
    此题考查了无理数,弄清无理数的定义是解本题的关键.
    7、B
    【解析】
    试题解析:∵AB∥CD,且



    ∴在中,
    故选B.
    8、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:A.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    9、C
    【解析】
    分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
    详解:∵OB=1,AB⊥OB,点A在函数 (x0)的图象上,
    ∴k=4,
    ∴反比例函数的解析式为,O1(3,0),
    ∵C1O1⊥x轴,
    ∴当x=3时,
    ∴P
    故选C.
    点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
    10、B
    【解析】
    根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
    【详解】
    解:连接,

    ∵为的直径,
    ∴.
    ∵,
    ∴,
    ∴.
    故选:B.
    【点睛】
    本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.

    二、填空题(共7小题,每小题3分,满分21分)
    11、或5或1.
    【解析】
    根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
    【详解】
    解:如图
    (1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
    (2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
    (3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
    则AN=3,AC=,AD=m,
    得:,得m=,
    综上所述:m为或5或1,
    所以答案:或5或1.
    【点睛】
    本题主要考查等腰三角形的性质,注意分类讨论的完整性.
    12、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.

    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    13、113°或92°
    【解析】
    解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.
    ①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;
    ②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.
    故答案为113°或92°.
    14、x(x﹣2)(x﹣1)2
    【解析】
    先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.
    【详解】
    解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2
    故答案为x(x﹣2)(x﹣1)2
    【点睛】
    此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.
    15、4
    【解析】
    ∵AE=ED,AE+ED=AD,∴ED=AD,
    ∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,
    ∴△DEF∽△BCF,
    ∴DF:BF=DE:BC=2:3,
    ∵DF+BF=BD=10,
    ∴DF=4,
    故答案为4.
    16、①③.
    【解析】
    根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
    【详解】
    由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
    该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
    ①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
    ②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
    ③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
    ④m=﹣3,结论错误,
    其中,正确的有. ①③
    故答案为:①③
    【点睛】
    本题考查了二次函数的图像,结合图表信息是解题的关键.
    17、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.

    三、解答题(共7小题,满分69分)
    18、1
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式

    =1.
    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    19、(1)25π;(2)CD1=,CD2=7
    【解析】
    分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;
    (2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.
    详解:(1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵AB是⊙O的直径,
    ∴AC=8,BC=1,
    ∴AB=10,
    ∴⊙O的面积=π×52=25π.
    (2)有两种情况:
    ①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,

    作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,
    ∵CE=,
    ∴OF= CE=,
    ∴,
    ∵=,
    ∴,
    ∴,
    ∴;
    ②如图所示,当点D位于下半圆中点D2时,

    同理可求.
    ∴CD1=,CD2=7
    点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.
    20、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
    【解析】
    (1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
    (2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
    【详解】
    (1)①∵,,
    ∴直线的解析式为,
    ∵点B在直线上,纵坐标为,
    ∴,
    解得x=2
    ∴,
    ∴;
    ②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;

    (2)①∵点在上,
    ∴k=5,
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD,
    ∴A,B关于直线y=x对称,
    ∴,
    则有:,解得;
    ②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.

    ∵A,C关于原点对称,,
    ∴,
    ∵,
    当时,
    ∴,
    ∴,
    ∴a=5或(舍弃),
    当点P在点A的左侧时,同法可得a=1,
    ∴满足条件的a的范围为或.
    【点睛】
    本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
    21、路灯的高CD的长约为6.1 m.
    【解析】
    设路灯的高CD为xm,
    ∵CD⊥EC,BN⊥EC,
    ∴CD∥BN,
    ∴△ABN∽△ACD,∴,
    同理,△EAM∽△ECD,
    又∵EA=MA,∵EC=DC=xm,
    ∴,解得x=6.125≈6.1.
    ∴路灯的高CD约为6.1m.
    22、 (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.
    【解析】
    (1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
    (2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.
    【详解】
    (1)依题意得:
    y=200+50×.
    化简得:y=-5x+1.
    (2)依题意有:
    ∵,
    解得300≤x≤2.
    (3)由(1)得:w=(-5x+1)(x-200)
    =-5x2+3200x-440000=-5(x-320)2+3.
    ∵x=320在300≤x≤2内,∴当x=320时,w最大=3.
    即售价定为320元/台时,可获得最大利润为3元.
    【点睛】
    本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.
    23、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
    【解析】
    (1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
    (2)将y=代入函数解析式中求出x值即可;
    (2)描点、连线画出函数图象;
    (4)观察函数图象,写出函数的一条性质即可.
    【详解】
    解:(1)∵x+1≠0,∴x≠﹣1.
    故答案为x≠﹣1.
    (2)当y==时,解得:x=2.
    故答案为2.
    (2)描点、连线画出图象如图所示.
    (4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.

    【点睛】
    本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
    24、(1)见解析;(2)见解析
    【解析】
    (1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
    (2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
    【详解】
    解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
    又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
    ∴四边形BCFE是平行四边形.
    又∵BE=FE,∴四边形BCFE是菱形.
    (2)∵∠BCF=120°,∴∠EBC=60°.
    ∴△EBC是等边三角形.
    ∴菱形的边长为4,高为.
    ∴菱形的面积为4×=.

    相关试卷

    湖北省黄冈市季黄梅县重点达标名校2021-2022学年中考猜题数学试卷含解析:

    这是一份湖北省黄冈市季黄梅县重点达标名校2021-2022学年中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析:

    这是一份湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析,共24页。试卷主要包含了下列运算中正确的是,化简的结果为,点M等内容,欢迎下载使用。

    2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map