


2022届湖北省黄冈市浠水县中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列计算中,正确的是( )
A.a•3a=4a2 B.2a+3a=5a2
C.(ab)3=a3b3 D.7a3÷14a2=2a
2.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是
A. B.
C. D.
3.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是( )
A. B. C. D.
4.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )
A.3m B. m C. m D.4m
5.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是( )
A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a
6.某青年排球队12名队员年龄情况如下:
年龄
18
19
20
21
22
人数
1
4
3
2
2
则这12名队员年龄的众数、中位数分别是( )
A.20,19 B.19,19 C.19,20.5 D.19,20
7.将不等式组的解集在数轴上表示,下列表示中正确的是( )
A. B. C. D.
8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子( )
A.1颗 B.2颗 C.3颗 D.4颗
9.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
10.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于
A.90° B.180° C.210° D.270°
二、填空题(共7小题,每小题3分,满分21分)
11.函数的自变量的取值范围是 .
12.如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要_____个三角形.
13.尺规作图:过直线外一点作已知直线的平行线.
已知:如图,直线l与直线l外一点P.
求作:过点P与直线l平行的直线.
作法如下:
(1)在直线l上任取两点A、B,连接AP、BP;
(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
(3)过点P、M作直线;
(4)直线PM即为所求.
请回答:PM平行于l的依据是_____.
14.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.
15.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
16.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
17.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
19.(5分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
20.(8分)问题提出
(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
问题探究
(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
问题解决
(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.
21.(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
(1)这次知识竞赛共有多少名学生?
(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.
22.(10分)化简(),并说明原代数式的值能否等于-1.
23.(12分)综合与实践:
概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .
问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.
拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
24.(14分)计算:(-)-2 – 2()+
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据同底数幂的运算法则进行判断即可.
【详解】
解:A、a•3a=3a2,故原选项计算错误;
B、2a+3a=5a,故原选项计算错误;
C、(ab)3=a3b3,故原选项计算正确;
D、7a3÷14a2=a,故原选项计算错误;
故选C.
【点睛】
本题考点:同底数幂的混合运算.
2、A
【解析】
依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
【详解】
解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,
抛物线向上平移5个单位后可得:,即,
形成的图象是A选项.
故选A.
【点睛】
本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.
3、A
【解析】
利用平行线的性质以及相似三角形的性质一一判断即可.
【详解】
解:∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥CD∥EF
∴△ABE∽△DCE,
∴,故选项B正确,
∵EF∥AB,
∴,
∴,故选项C,D正确,
故选:A.
【点睛】
考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、B
【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
【详解】
解:∵sin∠CAB=
∴∠CAB=45°.
∵∠C′AC=15°,
∴∠C′AB′=60°.
∴sin60°=,
解得:B′C′=3.
故选:B.
【点睛】
此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
5、D
【解析】
根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.
【详解】
由数轴上的位置可得,a<0,-a>0, 0
故选D
【点睛】
本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置.
6、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
7、B
【解析】
先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.
解:不等式可化为:,即.
∴在数轴上可表示为.故选B.
“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
8、B
【解析】
试题解析:由题意得,
解得:.
故选B.
9、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
10、B
【解析】
试题分析:如图,如图,过点E作EF∥AB,
∵AB∥CD,∴EF∥AB∥CD,
∴∠1=∠4,∠3=∠5,
∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
故选B
二、填空题(共7小题,每小题3分,满分21分)
11、>1
【解析】
依题意可得,解得,所以函数的自变量的取值范围是
12、n2﹣n+1
【解析】
观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;…可得,每一层比上一层多的个数依次为2,4,6,…据此作答.
【详解】
观察可得,第1层三角形的个数为1,第2层三角形的个数为22−2+1=3,
第3层三角形的个数为32−3+1=7,
第四层图需要42−4+1=13个三角形
摆第五层图需要52−5+1=21.
那么摆第n层图需要n2−n+1个三角形。
故答案为:n2−n+1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.
13、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【解析】
利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
【详解】
解:由作法得PM=AB,BM=PA,
∴四边形ABMP为平行四边形,
∴PM∥AB.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【点睛】
本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
14、50°
【解析】
根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
【详解】
解:∵AB=AC,∠BAC=80°,
∴∠B=∠C=(180°﹣80°)÷2=50°;
∵AD∥BC,
∴∠DAC=∠C=50°,
故答案为50°.
【点睛】
本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
15、1.2×10﹣1.
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:12纳米=12×0.000000001米=1.2×10−1米.
故答案为1.2×10−1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
16、48°
【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
【详解】
如图,在⊙O上取一点K,连接AK、KC、OA、OC.
∵四边形AKCB内接于圆,
∴∠AKC+∠ABC=180°,
∵∠ABC=114°,
∴∠AKC=66°,
∴∠AOC=2∠AKC=132°,
∵DA、DC分别切⊙O于A、C两点,
∴∠OAD=∠OCB=90°,
∴∠ADC+∠AOC=180°,
∴∠ADC=48°
故答案为48°.
【点睛】
本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
17、1
【解析】
连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
【详解】
连接AC交OB于D.
四边形OABC是菱形,
.
点A在反比例函数的图象上,
的面积,
菱形OABC的面积=的面积=1.
【点睛】
本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
三、解答题(共7小题,满分69分)
18、不公平
【解析】
【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
【详解】根据题意列表如下:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
∴P(甲获胜)=,P(乙获胜)=1﹣=,
则该游戏不公平.
【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
19、-2,-1,0,1
【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;
解不等式x≤2-x得x≤1.则这两个不等式解集的公共部分为 ,
因为x取整数,则x取-2,-1,0,1.
故答案为-2,-1,0,1
【点睛】
本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).
20、(1);(2);(2)小贝的说法正确,理由见解析,.
【解析】
(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
(2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
(1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
【详解】
解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.
∵△DCE为等边三角形,
∴ED=EC,
∵OD=OC
∴OE垂直平分DC,
∴DHDC=1.
∵四边形ABCD为正方形,
∴△OHD为等腰直角三角形,
∴OH=DH=1,
在Rt△DHE中,
HEDH=1,
∴OE=HE+OH=11;
(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,
在Rt△AOD中,AD=6,DO=1,
∴AO1,
∴AP=AO+OP=11;
(1)小贝的说法正确.理由如下,
如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,
由题意知,点N为AD的中点,,
∴ANAD=1.6,ON⊥AD,
在Rt△ANO中,
设AO=r,则ON=r﹣1.2.
∵AN2+ON2=AO2,
∴1.62+(r﹣1.2)2=r2,
解得:r,
∴AE=ON1.2,
在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
∴BO,
∴BP=BO+PO,
∴门角B到门窗弓形弧AD的最大距离为.
【点睛】
本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.
21、 (1)200;(2)72°,作图见解析;(3).
【解析】
(1)用一等奖的人数除以所占的百分比求出总人数;
(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
【详解】
解:(1)这次知识竞赛共有学生=200(名);
(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
补图如下:
“二等奖”对应的扇形圆心角度数是:360°×=72°;
(3)小华获得“一等奖或二等奖”的概率是: =.
【点睛】
本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
22、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
23、(1);(2);(3).
【解析】
(1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
(3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
【详解】
解:(1)∵△AB′C′的边长变为了△ABC的n倍,
∴△ABC∽△AB′C′,
∴,
故答案为:.
(2)四边形是矩形,
∴.
.
在中,,
.
.
.
(3)若四边形 ABB′C′为正方形,
则,,
∴,
∴,
又∵在△ABC中,AB=,
∴,
∴
故答案为:.
【点睛】
本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
24、0
【解析】
本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式.
【点睛】
本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.
2023年湖北省黄冈市部分学校中考数学模拟试卷(含解析): 这是一份2023年湖北省黄冈市部分学校中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖北省黄冈市浠水县方铺中学中考数学适应性试卷(一)(含解析): 这是一份2023年湖北省黄冈市浠水县方铺中学中考数学适应性试卷(一)(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖北省黄冈市浠水县方铺中学中考数学适应性试卷(一)(含解析): 这是一份2023年湖北省黄冈市浠水县方铺中学中考数学适应性试卷(一)(含解析),共38页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。