年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖北省监利县中考五模数学试题含解析

    2022届湖北省监利县中考五模数学试题含解析第1页
    2022届湖北省监利县中考五模数学试题含解析第2页
    2022届湖北省监利县中考五模数学试题含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省监利县中考五模数学试题含解析

    展开

    这是一份2022届湖北省监利县中考五模数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,没有实数根的是,下列运算正确的是,下列四个命题中,真命题是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知一个多边形的内角和是外角和的3倍,则这个多边形是(  )
    A.五边形 B.六边形 C.七边形 D.八边形
    2.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
    ①甲步行的速度为60米/分;
    ②乙走完全程用了32分钟;
    ③乙用16分钟追上甲;
    ④乙到达终点时,甲离终点还有300米
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    3.的相反数是
    A. B.2 C. D.
    4.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为
    A.1 B.3 C.0 D.1或3
    5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
    A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
    6.下列方程中,没有实数根的是(  )
    A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
    7.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )

    A.x>1 B.x≥1 C.x>3 D.x≥3
    8.下列运算正确的是( )
    A.4x+5y=9xy B.(−m)3•m7=m10
    C.(x3y)5=x8y5 D.a12÷a8=a4
    9.下列图形中,既是中心对称,又是轴对称的是(  )
    A. B. C. D.
    10.下列四个命题中,真命题是(  )
    A.相等的圆心角所对的两条弦相等
    B.圆既是中心对称图形也是轴对称图形
    C.平分弦的直径一定垂直于这条弦
    D.相切两圆的圆心距等于这两圆的半径之和
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.二次函数中的自变量与函数值的部分对应值如下表:




















    则的解为________.
    12.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
    13.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.
    14.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.

    15.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______

    16.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
    三、解答题(共8题,共72分)
    17.(8分)解方程.
    18.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
    19.(8分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.

    (1)求证:;
    (2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
    20.(8分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
    (1)如图①,求∠ODE的大小;
    (2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.

    21.(8分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
    (1)求证:AH是⊙O的切线;
    (2)若OB=4,AC=6,求sin∠ACB的值;
    (3)若,求证:CD=DH.

    22.(10分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.
    23.(12分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
    24.计算:|﹣1|+﹣(1﹣)0﹣()﹣1.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
    【详解】
    设多边形的边数是n,则
    (n−2)⋅180=3×360,
    解得:n=8.
    故选D.
    【点睛】
    此题考查多边形内角与外角,解题关键在于掌握其定理.
    2、A
    【解析】
    【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】由图可得,
    甲步行的速度为:240÷4=60米/分,故①正确,
    乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
    乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
    乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
    故选A.
    【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
    3、B
    【解析】
    根据相反数的性质可得结果.
    【详解】
    因为-2+2=0,所以﹣2的相反数是2,
    故选B.
    【点睛】
    本题考查求相反数,熟记相反数的性质是解题的关键 .
    4、B
    【解析】
    直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.
    【详解】
    ∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,
    ∴(m﹣1)+1+m2﹣5m+3=0,
    ∴m2﹣4m+3=0,
    ∴m=1或m=3,
    但当m=1时方程的二次项系数为0,
    ∴m=3.
    故答案选B.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.
    5、D
    【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    详解:将数据重新排列为17、18、18、20、20、20、23,
    所以这组数据的众数为20分、中位数为20分,
    故选:D.
    点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    6、D
    【解析】
    分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
    【详解】
    A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
    B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
    C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
    D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
    故选D.
    7、C
    【解析】
    试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
    则该不等式组的解集是x>1.
    故选C.
    考点:在数轴上表示不等式的解集.
    8、D
    【解析】
    各式计算得到结果,即可作出判断.
    【详解】
    解:A、4x+5y=4x+5y,错误;
    B、(-m)3•m7=-m10,错误;
    C、(x3y)5=x15y5,错误;
    D、a12÷a8=a4,正确;
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    9、C
    【解析】
    根据中心对称图形,轴对称图形的定义进行判断.
    【详解】
    A、是中心对称图形,不是轴对称图形,故本选项错误;
    B、不是中心对称图形,也不是轴对称图形,故本选项错误;
    C、既是中心对称图形,又是轴对称图形,故本选项正确;
    D、不是中心对称图形,是轴对称图形,故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.
    10、B
    【解析】
    试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;
    B. 圆既是中心对称图形也是轴对称图形,正确;
    C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;
    D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、或
    【解析】
    由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.
    【详解】
    解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),
    ∴此抛物线的对称轴为:直线x=-,
    ∵此抛物线过点(1,0),
    ∴此抛物线与x轴的另一个交点为:(-2,0),
    ∴ax2+bx+c=0的解为:x=-2或1.
    故答案为x=-2或1.
    【点睛】
    此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.
    12、1
    【解析】
    试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
    相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.
    13、5
    【解析】
    根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.
    【详解】
    解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,
    所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,
    则=,解得x=3,
    所以另一段长为18-3=15,
    因为15÷3=5,所以是第5张.
    故答案为:5.
    【点睛】
    本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.
    14、或.
    【解析】
    由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
    (1) 当∠ONM=90°时,则DN⊥BC.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵在Rt△ABC中,∠A=90°,AB=AC,
    ∴∠C=45°,
    ∵BC=20,
    ∴在Rt△ABC中,,
    ∵DE是△ABC的中位线,
    ∴,
    ∴在Rt△CFE中,,.
    ∵BM=3,BC=20,FC=5,
    ∴MF=BC-BM-FC=20-3-5=12.
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∵DE是△ABC的中位线,BC=20,
    ∴,DE∥BC,
    ∴∠DEM=∠EMF,即∠DEO=∠EMF,
    ∴,
    ∴在Rt△ODE中,.
    (2) 当∠MON=90°时,则DN⊥ME.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∴在Rt△MFE中,,
    ∵∠DEO=∠EMF,
    ∴,
    ∵DE=10,
    ∴在Rt△DOE中,.
    综上所述,DO的长是或.
    故本题应填写:或.
    点睛:
    在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.
    15、1
    【解析】
    根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
    【详解】
    ∵DE∥BC,
    ∴.
    ∵,CE=11,
    ∴,解得AE=1.
    故答案为1.
    【点睛】
    本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
    16、y3<y1<y1
    【解析】
    根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
    【详解】
    解:k=-1<0,
    ∴在每个象限,y随x的增大而增大,
    ∵-3<-1<0,
    ∴0<y1<y1.
    又∵1>0
    ∴y3<0
    ∴y3<y1<y1
    故答案为:y3<y1<y1
    【点睛】
    本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.

    三、解答题(共8题,共72分)
    17、原分式方程无解.
    【解析】
    根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
    【详解】
    方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
    即:x2+2x﹣x2﹣x+2=3
    整理,得x=1
    检验:当x=1时,(x﹣1)(x+2)=0,
    ∴原方程无解.
    【点睛】
    本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
    18、;2.
    【解析】
    先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
    【详解】
    解:原式=
    =
    =
    的非负整数解有:2,1,0,
    其中当x取2或1时分母等于0,不符合条件,故x只能取0
    ∴将x=0代入得:原式=2
    【点睛】
    本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
    19、(1) 证明见解析;(2) 证明见解析.
    【解析】
    分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
    (2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
    详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
    ∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
    (2)设FM=a,则BF=3a,BM=4a.
    由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
    ∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.

    点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
    20、(1)∠ODE=90°;(2)∠A=45°.
    【解析】
    分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
    (Ⅱ)利用中位线的判定和定理解答即可.
    详解:(Ⅰ)连接OE,BD.
    ∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
    ∵E点是BC的中点,∴DE=BC=BE.
    ∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
    ∵∠ABC=90°,∴∠ODE=90°;
    (Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
    ∵OA=OD,∴∠A=∠ADO=.

    点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
    21、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
    (2)利用正弦的定义计算;
    (3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
    【详解】
    (1)证明:连接OA,
    由圆周角定理得,∠ACB=∠ADB,
    ∵∠ADE=∠ACB,
    ∴∠ADE=∠ADB,
    ∵BD是直径,
    ∴∠DAB=∠DAE=90°,
    在△DAB和△DAE中,

    ∴△DAB≌△DAE,
    ∴AB=AE,又∵OB=OD,
    ∴OA∥DE,又∵AH⊥DE,
    ∴OA⊥AH,
    ∴AH是⊙O的切线;
    (2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
    ∴∠E=∠ACD,
    ∴AE=AC=AB=1.
    在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
    ∴sin∠ADB==,即sin∠ACB=;
    (3)证明:由(2)知,OA是△BDE的中位线,
    ∴OA∥DE,OA=DE.
    ∴△CDF∽△AOF,
    ∴=,
    ∴CD=OA=DE,即CD=CE,
    ∵AC=AE,AH⊥CE,
    ∴CH=HE=CE,
    ∴CD=CH,
    ∴CD=DH.

    【点睛】
    本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
    22、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.
    23、自行车速度为16千米/小时,汽车速度为40千米/小时.
    【解析】
    设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.
    【详解】
    设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得

    解得x=16,
    经检验x=16适合题意,
    2.5x=40,
    答:自行车速度为16千米/小时,汽车速度为40千米/小时.
    24、1
    【解析】
    试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
    试题解析:
    解:|﹣1|+﹣(1﹣)0﹣()﹣1
    =1+3﹣1﹣2
    =1.
    点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.

    相关试卷

    湖北省荆州市监利县重点中学2022年中考三模数学试题含解析:

    这是一份湖北省荆州市监利县重点中学2022年中考三模数学试题含解析,共19页。试卷主要包含了如果,那么等内容,欢迎下载使用。

    2022届湖北省孝昌县中考五模数学试题含解析:

    这是一份2022届湖北省孝昌县中考五模数学试题含解析,共18页。试卷主要包含了下列图形中一定是相似形的是等内容,欢迎下载使用。

    2022届湖北省监利县中考联考数学试题含解析:

    这是一份2022届湖北省监利县中考联考数学试题含解析,共24页。试卷主要包含了计算 的结果是,下列计算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map