搜索
    上传资料 赚现金
    英语朗读宝

    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析

    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析第1页
    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析第2页
    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析

    展开

    这是一份2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列命题中,正确的是,若点A,点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列各数中,最小的数是( )
    A.0 B. C. D.
    2.计算:得(  )
    A.- B.- C.- D.
    3.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )

    A.30° B.15° C.18° D.20°
    4.估计介于( )
    A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
    5.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )

    A.65° B.60°
    C.55° D.45°
    6.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
    A.180人 B.117人 C.215人 D.257人
    7.下列命题中,正确的是( )
    A.菱形的对角线相等
    B.平行四边形既是轴对称图形,又是中心对称图形
    C.正方形的对角线不能相等
    D.正方形的对角线相等且互相垂直
    8.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3bn(an+b)(n≠1),其中正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    10.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
    A.> B.= C.< D.不能确定
    二、填空题(共7小题,每小题3分,满分21分)
    11.________.
    12.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
    13.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.

    14.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.

    15.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.

    16.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.

    17.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
    (1)求线段AB的表达式,并写出自变量x的取值范围;
    (2)求乙的步行速度;
    (3)求乙比甲早几分钟到达终点?

    19.(5分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
    (1)求A,B两点间的距离(结果精确到0.1km).
    (2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)

    20.(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
    (1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
    (2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
    21.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.

    22.(10分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).

    (1)当时,
    ①在图1中依题意画出图形,并求(用含的式子表示);
    ②探究线段,,之间的数量关系,并加以证明;
    (2)当时,直接写出线段,,之间的数量关系.
    23.(12分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
    (1)求证:AM=FM;
    (2)若∠AMD=a.求证:=cosα.

    24.(14分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.

    (1)求证:DB平分∠ADC;
    (2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据实数大小比较法则判断即可.
    【详解】
    <0<1<,
    故选D.
    【点睛】
    本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
    2、B
    【解析】
    同级运算从左向右依次计算,计算过程中注意正负符号的变化.
    【详解】
    -
    故选B.
    【点睛】
    本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
    3、C
    【解析】
    ∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
    【详解】
    ∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
    ∴∠1=108°-90°=18°.故选C
    【点睛】
    本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
    4、C
    【解析】
    解:∵,
    ∴,即
    ∴估计在2~3之间
    故选C.
    【点睛】
    本题考查估计无理数的大小.
    5、A
    【解析】
    根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
    【详解】
    由题意可得:MN是AC的垂直平分线,
    则AD=DC,故∠C=∠DAC,
    ∵∠C=30°,
    ∴∠DAC=30°,
    ∵∠B=55°,
    ∴∠BAC=95°,
    ∴∠BAD=∠BAC-∠CAD=65°,
    故选A.
    【点睛】
    此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
    6、B
    【解析】
    设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
    【详解】
    设男生为x人,则女生有65%x人,由题意得,
    x+65%x=297,
    解之得
    x=180,
    297-180=117人.
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
    7、D
    【解析】
    根据菱形,平行四边形,正方形的性质定理判断即可.
    【详解】
    A.菱形的对角线不一定相等, A 错误;
    B.平行四边形不是轴对称图形,是中心对称图形,B 错误;
    C. 正方形的对角线相等,C错误;
    D.正方形的对角线相等且互相垂直,D 正确; 故选:D.
    【点睛】
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    8、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    9、B
    【解析】
    ①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
    【详解】
    ①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
    ②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
    ③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
    ④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
    ⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
    ∴③④⑤正确.
    故选B.
    【点睛】
    本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
    10、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
    【详解】
    解:原式=2×=1.
    故答案为1.
    【点睛】
    本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
    12、4.027
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:4 0270 0000用科学记数法表示是4.027×1.
    故答案为4.027×1.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    13、1
    【解析】
    根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.
    【详解】
    ∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,
    ∴b=3+(-4)=-1,
    ∵|b|=|c|,
    ∴c=1.
    故答案为1.
    【点睛】
    考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.
    14、1
    【解析】
    根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.
    【详解】
    解:∵△EBD由△ABC旋转而成,
    ∴△ABC≌△EBD,
    ∴BC=BD,∠EBD=∠ABC=30°,
    ∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,
    ∴;
    故答案为:1.
    【点睛】
    此题考查旋转的性质,即图形旋转后与原图形全等.
    15、117°
    【解析】
    连接AD,BD,利用圆周角定理解答即可.
    【详解】
    连接AD,BD,

    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∵∠AED=27°,
    ∴∠DBA=27°,
    ∴∠DAB=90°-27°=63°,
    ∴∠DCB=180°-63°=117°,
    故答案为117°
    【点睛】
    此题考查圆周角定理,关键是根据圆周角定理解答.
    16、
    【解析】
    根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
    【详解】
    解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
    ∴tan∠AED=tanB=.
    故答案为:.
    【点睛】
    本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
    17、1
    【解析】
    先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
    【详解】
    解:∵点E,F分别是的中点,
    ∴FE是△BCD的中位线,
    .
    又∵E是BD的中点,
    ∴Rt△ABD中,,

    故答案为1.
    【点睛】
    本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.

    三、解答题(共7小题,满分69分)
    18、(1);(2)80米/分;(3)6分钟
    【解析】
    (1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
    (2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
    (3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.
    【详解】
    (1)根据题意得:
    设线段AB的表达式为:y=kx+b (4≤x≤16),
    把(4,240),(16,0)代入得:

    解得:,
    即线段AB的表达式为:y= -20x+320 (4≤x≤16),
    (2)又线段OA可知:甲的速度为:=60(米/分),
    乙的步行速度为:=80(米/分),
    答:乙的步行速度为80米/分,
    (3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
    与终点的距离为:2400-960=1440(米),
    相遇后,到达终点甲所用的时间为:=24(分),
    相遇后,到达终点乙所用的时间为:=18(分),
    24-18=6(分),
    答:乙比甲早6分钟到达终点.
    【点睛】
    本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.
    19、(1)1.7km;(2)8.9km;
    【解析】
    (1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
    【详解】
    解:(1)由题意可得,
    ∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
    ∴AO=OC•tan34°,BO=OC•tan45°,
    ∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
    即A,B两点间的距离是1.7km;
    (2)由已知可得,
    ∠DOC=90°,OC=5km,∠DCO=56°,
    ∴cos∠DCO=

    ∵sin34°=cos56°,

    解得,CD≈8.9
    答:此时雷达站C和运载火箭D两点间的距离是8.9km.
    【点睛】
    本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.
    20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
    【解析】
    (1)直接利用每件利润×销量=总利润进而得出等式求出答案;
    (2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
    【详解】
    (1)根据题意得:(x﹣20)(﹣2x+1)=150,
    解得:x1=25,x2=35,
    答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
    (2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
    ∵a=﹣2,
    ∴抛物线开口向下,当x<30时,y随x的增大而增大,
    又由于这种农产品的销售价不高于每千克28元
    ∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
    ∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
    【点睛】
    此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
    21、(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    (1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
    (2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;
    (3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.
    【详解】
    (1)如图,连接OD,

    ∵CD是⊙O的切线,
    ∴OD⊥CD,
    ∴∠2+∠3=∠1+∠COD=90°,
    ∵DE=EC,
    ∴∠1=∠2,
    ∴∠3=∠COD,
    ∴DE=OE;
    (2)∵OD=OE,
    ∴OD=DE=OE,
    ∴∠3=∠COD=∠DEO=60°,
    ∴∠2=∠1=30°,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴∠BOC=∠DOC=60°,
    在△CDO与△CBO中,,
    ∴△CDO≌△CBO(SAS),
    ∴∠CBO=∠CDO=90°,
    ∴OB⊥BC,
    ∴BC是⊙O的切线;
    (3)∵OA=OB=OE,OE=DE=EC,
    ∴OA=OB=DE=EC,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴△ABO≌△CDE(AAS),
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴∠DAE=∠DOE=30°,
    ∴∠1=∠DAE,
    ∴CD=AD,
    ∴▱ABCD是菱形.
    【点睛】
    此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.
    22、(1)①;②;(2)
    【解析】
    (1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
    【详解】
    (1)当时,
    ①画出的图形如图1所示,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线
    ∴是的垂直平分线,
    ∵为线段上的点,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    ∴;

    ②;
    如图2,延长到点,使得,连接,作于点.
    ∵,点在上,
    ∴.
    ∵点在的延长线上,,
    ∴.
    ∴.
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    即为底角为的等腰三角形.
    ∴.
    ∴.

    (2)如图3,当时,
    在上取一点使,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线,
    ∵为线段上的点,
    ∴是的垂直平分线,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    ∴.
    ∴.

    【点睛】
    此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
    23、(1)见解析;(2)见解析.
    【解析】
    (1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.
    (2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立
    【详解】
    (1)由旋转性质可知:
    CD=CG且∠DCG=90°,
    ∴∠DGC=45°从而∠DGF=45°,
    ∵∠EFG=90°,
    ∴HF=FG=AD
    又由旋转可知,AD∥EF,
    ∴∠DAM=∠HFM,
    又∵∠DMA=∠HMF,
    ∴△ADM≌△FHM
    ∴AM=FM
    (2)作FN⊥DG垂足为N

    ∵△ADM≌△MFH
    ∴DM=MH,AM=MF=AF
    ∵FH=FG,FN⊥HG
    ∴HN=NG
    ∵DG=DM+HM+HN+NG=2(MH+HN)
    ∴MN=DG
    ∵cos∠FMG=
    ∴cos∠AMD=
    ∴=cosα
    【点睛】
    本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.
    24、(1)详见解析;(2)OA=.
    【解析】
    (1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
    (2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
    【详解】
    (1)证明:连接OB,

    ∵BE为⊙O的切线,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠ABE+∠OBA=90°,
    ∵OA=OB,
    ∴∠OBA=∠OAB,
    ∴∠ABE+∠OAB=90°,
    ∵AD是⊙O的直径,
    ∴∠OAB+∠ADB=90°,
    ∴∠ABE=∠ADB,
    ∵四边形ABCD的外接圆为⊙O,
    ∴∠EAB=∠C,
    ∵∠E=∠DBC,
    ∴∠ABE=∠BDC,
    ∴∠ADB=∠BDC,
    即DB平分∠ADC;
    (2)解:∵tan∠ABE=,
    ∴设AB=x,则BD=2x,
    ∴,
    ∵∠BAE=∠C,∠ABE=∠BDC,
    ∴△AEB∽△CBD,
    ∴,
    ∴,
    解得x=3,
    ∴AB=x=15,
    ∴OA=.
    【点睛】
    本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.

    相关试卷

    黑龙江省齐齐哈尔市昂昂溪区市级名校2021-2022学年中考试题猜想数学试卷含解析:

    这是一份黑龙江省齐齐哈尔市昂昂溪区市级名校2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了抛物线y=3,下列计算正确的是等内容,欢迎下载使用。

    黑龙江省齐齐哈尔市昂昂溪区市级名校2022年中考数学仿真试卷含解析:

    这是一份黑龙江省齐齐哈尔市昂昂溪区市级名校2022年中考数学仿真试卷含解析,共17页。试卷主要包含了下列运算正确的是,下列运算结果是无理数的是等内容,欢迎下载使用。

    2022年湖北省随州曾都区市级名校中考猜题数学试卷含解析:

    这是一份2022年湖北省随州曾都区市级名校中考猜题数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数中,互为相反数的是,如图,将△ABC绕点C等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map