2022届河南省中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )
A.正方体 B.球 C.圆锥 D.圆柱体
2.计算结果是( )
A.0 B.1 C.﹣1 D.x
3.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.
A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
4.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
5.下面调查中,适合采用全面调查的是( )
A.对南宁市市民进行“南宁地铁1号线线路”
B.对你安宁市食品安全合格情况的调查
C.对南宁市电视台《新闻在线》收视率的调查
D.对你所在的班级同学的身高情况的调查
6.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.8cm B.4cm C.4cm D.5cm
7.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
8.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )
A. B.π C. D.3
9.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
10.已知xa=2,xb=3,则x3a﹣2b等于( )
A. B.﹣1 C.17 D.72
二、填空题(本大题共6个小题,每小题3分,共18分)
11.反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=____.
12.分解因式:8x²-8xy+2y²= _________________________ .
13.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.
14.分解因式:3a2﹣12=___.
15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
16.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.
三、解答题(共8题,共72分)
17.(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)该校有_____个班级,补全条形统计图;
(2)求该校各班留守儿童人数数据的平均数,众数与中位数;
(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
18.(8分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
19.(8分)某水果批发市场香蕉的价格如下表
购买香蕉数(千克) | 不超过20千克 | 20千克以上但不超过40千克 | 40千克以上 |
每千克的价格 | 6元 | 5元 | 4元 |
张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
20.(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.
例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).
①若点A(-2,-1),则d(P,A)= ;
②若点B(b,2),且d(P,B)=5,则b= ;
③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.
21.(8分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.
22.(10分)先化简,再求值:,其中a=+1.
23.(12分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
24.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.
【详解】
根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.
故选D.
【点睛】
此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.
2、C
【解析】
试题解析:.
故选C.
考点:分式的加减法.
3、A
【解析】
根据题意先画出相应的图形,然后进行推理论证即可得出结论.
【详解】
甲的作法如图一:
∵为等边三角形,AD是的角平分线
∴
由甲的作法可知,
在和中,
故甲的作法正确;
乙的作法如图二:
在和中,
故乙的作法正确;
故选:A.
【点睛】
本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
4、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
5、D
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
故选D.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
【详解】
解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,
∴
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE为△AOC的外角,
∴∠COE=45°,
∴△COE为等腰直角三角形,
∴
故选:C.
【点睛】
此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
7、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
8、B
【解析】
∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,
∴的弧长=.
故选B.
9、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
10、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.
【详解】
把点(2,m)代入反比例函数和正比例函数中得,,,则.
【点睛】
本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.
12、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
13、1.1.
【解析】
分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
详解:由旋转的性质可得:AD=AB,
∵∠B=60°,
∴△ABD是等边三角形,
∴BD=AB,
∵AB=2,BC=3.1,
∴CD=BC-BD=3.1-2=1.1.
故答案为:1.1.
点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
14、3(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
15、1
【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.
【详解】
易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
故答案为1.
16、10,,.
【解析】
解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
故答案为10,,.
三、解答题(共8题,共72分)
17、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
【解析】
(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
(3)利用班级数60乘以(2)中求得的平均数即可.
【详解】
解:(1)该校的班级数是:2÷2.5%=16(个).
则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
条形统计图补充如下图所示:
故答案为16;
(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
故这组数据的众数是10,中位数是(8+10)÷2=3.
即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
(3)该镇小学生中,共有留守儿童60×3=1(名).
答:该镇小学生中共有留守儿童1名.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
18、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
【详解】
(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.
得
解得:,
答:A、B两种品牌得化妆品每套进价分别为100元,75元.
(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
解得,5≤m≤10,
利润是30m+20(50﹣m)=1000+10m,
当m取最大10时,利润最大,
最大利润是1000+100=1100,
所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
19、第一次买14千克香蕉,第二次买36千克香蕉
【解析】
本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
【详解】
设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
则①当0<x≤20,y≤40,则题意可得
.
解得.
②当0<x≤20,y>40时,由题意可得
.
解得.(不合题意,舍去)
③当20<x<3时,则3<y<2,此时张强用去的款项为
5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
【点睛】
本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
20、(1)① 6,② 2或4,③ 1<m<4;(2)或.
【解析】
(1)①根据“折线距离”的定义直接列式计算;
②根据“折线距离”的定义列出方程,求解即可;
③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.
(2)由题意可知,根据图像易得t的取值范围.
【详解】
解:(1) ①
②
∴
∴ b=2或4
③ ,
即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4
(2)设E(x,y),则,
如图,若点E在⊙F上,则.
【点睛】
本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.
21、135°
【解析】
先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
22、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
原式=
=,
当a=+1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
23、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
24、10,1.
【解析】
试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
2022年河南省南阳内乡县联考中考试题猜想数学试卷含解析: 这是一份2022年河南省南阳内乡县联考中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,方程x2﹣3x+2=0的解是,最小的正整数是等内容,欢迎下载使用。
2022届湖北省中考试题猜想数学试卷含解析: 这是一份2022届湖北省中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体中三视图完全相同的是,化简的结果是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。
2022届湖北黄冈中考试题猜想数学试卷含解析: 这是一份2022届湖北黄冈中考试题猜想数学试卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。