山东省滨州市滨城区2021-2022学年八年级下学期期末数学试题(word版含答案)
展开2021~2022学年度第二学期期末质量检测
八年级数学试题(A)
温馨提示:
1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。满分120分。考试用时120分钟。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。答案不能答在试题卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。
第Ⅰ卷(选择题共36分)
一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.
1.下列根式中,是最简二次根式的是( )
A. B. C. D.
2.下列各组数中,能构成直角三角形的是( )
A.1,1,2 B.15,21,25 C.7,24,25 D.6,12,13
3.如图,四边形为平行四边形,作的平分线,交边于点E,若,则的度数为( )
A.45° B.60° C.80° D.120°
4.如图是自动测温仪记录的图象,它反映了某市春季某天气温T如何随时间t的变化而变化.下列从图象中得到的信息错误的是( )
A.4点时气温达最低 B.14点到24点之间气温持续下降
C.0点到14点之间气温持续上升 D.14点时气温达最高是8C
5.实数a、b在数轴上的位置如图,则化简的结果是( )
A. B. C. D.
6.如图,点O为菱形的对角线的交点,,,若,,则线段的长为( )
A.5 B. C.3 D.6
7.如图,点A表示的数为x,则的值为( )
A. B. C. D.
8.如图,已知四边形,下列说法中正确的是( )
A.若,,则四边形是矩形
B.若,,则四边形是菱形
C.若,则四边形正方形
D.若,,则四边形是平行四边形
9.一次函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,中,,垂足为D,E为边的中点,,,,则的度数为( )
A.15° B.22.5° C.30° D.45°
11.我们知道,若.则有或.如图,直线与分别交x轴于点、,则不等式的解集是( )
A. B. C. D.或
12.如图,正方形中,,点E在边上,,将沿对折至,延长交边于点G,连接、,给出以下结论:①;②;③;④S;⑤.其中正确结论的个数是( )
A.5 B.4 C.3 D.2
第Ⅱ卷(非选择题 共84分)
二、填空题(共6小题,满分24分,每小题4分)
13.若式子在实数范围内有意义,则x的取值范围是____________.
14.某校拟招聘一批优秀教师,某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,然后再按笔试、试讲、面试的占比为2∶2∶1计算选手的综合成绩,则该名教师的综合成绩为__________分.
15.一个三角形两条边长为3和4,当第三条边长为__________时,此三角形为直角三角形.
16.如图,直线l经过正方形的顶点A,分别过点B、D作于点E,于点F,若,,则的长为__________.
17.如图,在中,,,P为边上一动点,于E,于F,M为中点,则的取值范围是___________.
18.如图,在平面直角坐标系中,函数的图象分别交x轴,y轴于A,B两点,过点A的直线交y轴正半轴于点M,且.在平面直角坐标系内存在点C,使得以A,B,M,C为顶点的四边形是平行四边形,则点C的坐标为____________.
三.解答题:(本大题共6个小题,满分60分.解答时请写出必要的演推过程.
19.(10分)计算:
(1) (2)
20.(8分)为迎接建党一百周年,学校组织了六次党史知识测试,甲、乙两名同学部分成绩如图所示,已知甲、乙两名同学六次成绩的平均数相等.
(1)计算甲同学成绩的平均数,直接写出乙同学第六次成绩;
(2)甲同学成绩的中位数和众数分别为________和________,乙同学成绩的中位数和众数分别为________和_________;
(3)若乙同学成绩的方差为,请计算甲同学成绩的方差,并比较哪个同学的成绩较稳定?
21.(10分)如图,在四边形中,,,对角线、交于点O,平分,过点C作交延长线于点E,连接.
(1)求证:四边形是菱形;
(2)若,,求菱形的面积.
22.(10分)已知函数的图像与x、y轴分别交与A,B两点,的图像与x、y轴分别交与C,D两点,两直线相交于点E.求下列问题:
(1)根据题意画出图像的草图;
(2)求点E的坐标;
(3)求四边形的面积.
23.(10分)冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售,两款玩偶的进货价和销售价如表:
| A款玩偶 | B款玩偶 |
进货价(元/个) | 20 | 15 |
销售价(元/个) | 28 | 20 |
(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个?
(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?
24.(12分)如图,直线:与x轴交于点D,直线:与x轴交于点A,且经过定点,直线与交于点.
(1)填空:__________;___________;___________;
(2)在x轴上是否存在一点E,使的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)若动点P在射线上从点D开始以每秒1个单位的速度运动,连接,设点P的运动时间为t秒.是否存在t的值,使和的面积比为1∶3?若存在,求出t的值;若不存在,请说明理由.
2021~2022学年度第二学期期末质量检测
八年级数学试题(A)
一、选择题(共12小题,满分36分,每小题3分)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
C | C | B | C | C | A | D | D | A | C | B | B |
二、填空题(共6小题,满分24分,每小题4分)
13. 14.88.8 15.或5 16.9
17. 18.或或
三、解答题(共6小题,满分60分)
19.计算(每题5分)
(1)原式 (2)原式
20.解:(1)甲同学成绩的平均数:,··············································1分
∵甲、乙两名同学六次成绩的平均数相等,
∴乙同学第六次成绩是:;······················································2分
(2)把甲同学的成绩从小到大排列为60,65,75,75,80,95,
中位数是,···································································3分
∵75出现了2次,出现的次数最多,
∴甲同学的众数是75,··························································4分
把乙同学的成绩从小到大排列为70,70,70,75,80,85,
中位数是,···································································5分
∵70出现了3次,出现的次数最多,
∴乙同学的众数是70.···························································6分
(3).
∵甲、乙两名同学六次成绩的平均数相等,
∴乙同学的成绩较稳定.·························································8分
21.(1)证明:∵,
∴,
∵平分,
∴,
∴,
∵,
∴,
∵,
∴四边形是平行四边形,························································3分
∵,
∴平行四边形是菱形;··························································5分
(2)解:∵四边形是菱形,
∴,,,
∴,
∵,
∴,
∴,········································································8分
∴,
在中,,
∴,
∴,········································································9分
·.········································································10分
22.(1)
···········································································2分
(2)由题意知,得
所以点E的坐标································································5分
(3)
,当时,,∴点D的坐标;
,当时,,∴点B的坐标;
,当时,,∴点A的坐标;·······················································8分
,,········································································9分
..··········································································10分
23.解:(1)设购进A款玩偶x个,则购进B款玩偶个,
由题意可得:,·······························································3分
解得.
∴,········································································4分
答:购进A款玩偶20个,则购进B款玩偶10个;········································5分
(2)设购进A款玩偶a个,则购进B款玩偶个,利润为w元,
由题意可得:,·······························································7分
∴w随a的增大而增大,
∵网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,
∴,
解得,······································································8分
∴当时,w取得最大值,此时,,··················································9分
答:购进A款玩偶10个,购进B款玩偶20个时才能获得最大利润,最大利润是180元.············10分
24.解:(1)∵直线:与x轴交于点A,且经过定点,
∴,
∴,
∴直线:,
∵直线:经过点,
∴,
∴,
把代入,得到.
∴,,.
故答案为:,4,2;····························································3分
(2)作点C关于x轴的对称点C,连接交x轴于E,连接,则的周长最小.
∵,,
∴直线的解析式为,····························································5分
令,得到,
∴,········································································6分
∴存在一点E,使的周长最短,;··················································7分
(3)∵点P在射线上从点D开始以每秒1个单位的速度运动,直线:,
∴,
∵,过点C作,交x轴于点M,在中,根据勾股定理,得
∴,········································································8分
∵点P的运动时间为t秒.
∴,
分两种情况:①点P在线段上,
∵和的面积比为1∶3,
∴,
∴,
∴,
∴;·······································································10分
②点P在线段的延长线上,
∵和的面积比为1∶3,
∴,
∴,
∴,
∴.
综上:存在t的值,使和的面积比为1∶3,t的值为或.···································12分
2021-2022学年山东省滨州市滨城区八年级上学期期末数学试题及答案: 这是一份2021-2022学年山东省滨州市滨城区八年级上学期期末数学试题及答案,共23页。试卷主要包含了下列各式是最简分式的是,下列计算正确的是,下列说法中错误的是等内容,欢迎下载使用。
山东省滨州市滨城区2022-2023学年八年级上学期期末数学试题(含答案): 这是一份山东省滨州市滨城区2022-2023学年八年级上学期期末数学试题(含答案),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
山东省滨州市滨城区2021-2022学年七年级上学期期末数学试题(含答案): 这是一份山东省滨州市滨城区2021-2022学年七年级上学期期末数学试题(含答案),共12页。试卷主要包含了下列计算中,正确的是,下面去括号正确的是,下列变形中正确的是,下列等式的变形中,正确的是,下列说法中正确的个数是等内容,欢迎下载使用。