浙江省湖州市2018-2022中考数学真题汇编-03填空题
展开
这是一份浙江省湖州市2018-2022中考数学真题汇编-03填空题,共25页。试卷主要包含了计算,分解因式,化简,的图象经过OA的中点C等内容,欢迎下载使用。
浙江省湖州市2018-2022中考数学真题汇编-03填空题
一.有理数的减法
1.(2020•湖州)计算:﹣2﹣1= .
二.因式分解-运用公式法
2.(2022•云南)分解因式:x2﹣9= .
三.分式的值
3.(2022•湖州)当a=1时,分式的值是 .
4.(2018•湖州)当x=1时,分式的值是 .
四.约分
5.(2020•湖州)化简:= .
五.负整数指数幂
6.(2021•湖州)计算:2×2﹣1= .
六.二次根式有意义的条件
7.(2021•金华)二次根式中,字母x的取值范围是 .
七.反比例函数系数k的几何意义
8.(2020•湖州)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连接CD.若△ACD的面积是2,则k的值是 .
八.待定系数法求反比例函数解析式
9.(2022•湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=,则图象经过点D的反比例函数的解析式是 .
九.反比例函数与一次函数的交点问题
10.(2019•湖州)如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连接OC,OD.若△COE的面积与△DOB的面积相等,则k的值是 .
一十.二次函数的性质
11.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是 .
一十一.抛物线与x轴的交点
12.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是 .
一十二.七巧板
13.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是 .
一十三.多边形内角与外角
14.(2021•湖州)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是 度.
一十四.菱形的性质
15.(2018•湖州)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是 .
一十五.垂径定理
16.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 .
一十六.圆周角定理
17.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是 .
18.(2019•湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是 .
一十七.三角形的内切圆与内心
19.(2018•湖州)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是 .
一十八.作图—应用与设计作图
20.(2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的面积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是 (不包括5).
一十九.命题与定理
21.(2022•湖州)命题“如果|a|=|b|,那么a=b.”的逆命题是 .
二十.图形的剪拼
22.(2021•湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 .
二十一.相似三角形的判定
23.(2020•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是 .
二十二.相似三角形的判定与性质
24.(2022•湖州)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是 .
二十三.锐角三角函数的定义
25.(2021•湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sinB的值是 .
二十四.解直角三角形的应用
26.(2019•湖州)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO=85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为 cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
二十五.加权平均数
27.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.
二十六.概率公式
28.(2022•湖州)一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是 .
29.(2021•湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
二十七.列表法与树状图法
30.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,
第二次
第一次
白
红Ⅰ
红Ⅱ
白
白,白
白,红Ⅰ
白,红Ⅱ
红Ⅰ
红Ⅰ,白
红Ⅰ,红Ⅱ
红Ⅰ,红Ⅱ
红Ⅱ
红Ⅱ,白
红Ⅱ,红Ⅰ
红Ⅱ,红Ⅱ
则两次摸出的球都是红球的概率是 .
参考答案与试题解析
一.有理数的减法
1.(2020•湖州)计算:﹣2﹣1= ﹣3 .
【解答】解:﹣2﹣1
=﹣3
故答案为:﹣3
二.因式分解-运用公式法
2.(2022•云南)分解因式:x2﹣9= (x+3)(x﹣3) .
【解答】解:x2﹣9=(x+3)(x﹣3).
故答案为:(x+3)(x﹣3).
三.分式的值
3.(2022•湖州)当a=1时,分式的值是 2 .
【解答】解:当a=1时,
原式==2.
故答案为:2.
4.(2018•湖州)当x=1时,分式的值是 .
【解答】解:当x=1时,原式==,
故答案为:.
四.约分
5.(2020•湖州)化简:= .
【解答】解:
=
=.
故答案为:.
五.负整数指数幂
6.(2021•湖州)计算:2×2﹣1= 1 .
【解答】解:2×2﹣1=2×=1.
故答案为:1.
六.二次根式有意义的条件
7.(2021•金华)二次根式中,字母x的取值范围是 x≥3 .
【解答】解:当x﹣3≥0时,二次根式有意义,
则x≥3;
故答案为:x≥3.
七.反比例函数系数k的几何意义
8.(2020•湖州)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连接CD.若△ACD的面积是2,则k的值是 .
【解答】解:连接OD,过C作CE∥AB,交x轴于E,
∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,
∴S△COE=S△BOD=,S△ACD=S△OCD=2,
∵CE∥AB,
∴△OCE∽△OAB,
∴,
∴4S△OCE=S△OAB,
∴4×k=2+2+k,
∴k=,
故答案为:.
八.待定系数法求反比例函数解析式
9.(2022•湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=,则图象经过点D的反比例函数的解析式是 y=﹣ .
【解答】解:如图,过点C作CT⊥y轴于点T,过点D作DH⊥CT交CT的延长线于点H.
∵tan∠ABO==3,
∴可以假设OB=a,OA=3a,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠AOB=∠BTC=90°,
∴∠ABO+∠CBT=90°,∠CBT+∠BCT=90°,
∴∠ABO=∠BCT,
∴△AOB≌△BTC(AAS),
∴BT=OA=3a,OB=TC=a,
∴OT=BT﹣OB=2a,
∴C(a,2a),
∵点C在y=上,
∴2a2=1,
同法可证△CHD≌△BTC,
∴DH=CT=a,CH=BT=3a,
∴D(﹣2a,3a),
设经过点D的反比例函数的解析式为y=,则有﹣2a×3a=k,
∴k=﹣6a2=﹣3,
∴经过点D的反比例函数的解析式是y=﹣.
故答案为:y=﹣.
九.反比例函数与一次函数的交点问题
10.(2019•湖州)如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连接OC,OD.若△COE的面积与△DOB的面积相等,则k的值是 2 .
【解答】解:令x=0,得y=x﹣1=﹣1,
∴B(0,﹣1),
∴OB=1,
把y=x﹣1代入y2=(x<0)中得,x﹣1=(x<0),
解得,x=1﹣,
∴,
∴,
∵CE⊥x轴,
∴,
∵△COE的面积与△DOB的面积相等,
∴,
∴k=2,或k=0(舍去).
经检验,k=2是原方程的解.
故答案为:2.
一十.二次函数的性质
11.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是 2或﹣8 .
【解答】解:∵△AOM是直角三角形,
∴当对称轴x≠0或x≠3时,一定存在两个以A,O为直角顶点的直角三角形,且点M在对称轴上的直角三角形,
当对称轴x=0或x=3时,不存在满足条件的点M,
∴当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形(如图所示).
观察图象可知,﹣=﹣1或4,
∴=2或﹣8,
故答案为:2或﹣8.
一十一.抛物线与x轴的交点
12.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是 ﹣2 .
【解答】解:∵四边形ABOC是正方形,
∴点B的坐标为(﹣,﹣).
∵抛物线y=ax2过点B,
∴﹣=a(﹣)2,
解得:b1=0(舍去),b2=﹣2.
故答案为:﹣2.
一十二.七巧板
13.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是 4 .
【解答】解:如图2中,连接EG,作GM⊥EN交EN的延长线于M.
在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,
∴EG===4,
∴EH==4,
解法二:如图,连接EG交MN于点O.
由题意,EN=MN=4,GM=8,
∵∠EON=∠GOM,∠N=∠M=90°,
∴△EON∽△GOM,
∴==,
∴ON=MN=,
∴OE==,OG=2OE=,
∴GF=EG=(OE+OG)=4.
故答案为4.
一十三.多边形内角与外角
14.(2021•湖州)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是 36 度.
【解答】解:如图,
∵正五角星中,五边形FGHMN是正五边形,
∴∠GFN=∠FNM==108°,
∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,
∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.
故答案为:36.
一十四.菱形的性质
15.(2018•湖州)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是 2 .
【解答】解:∵四边形ABCD是菱形,AC=6,
∴AC⊥BD,OA=AC=3,BD=2OB.
在Rt△OAB中,∵∠AOD=90°,
∴tan∠BAC==,
∴OB=1,
∴BD=2.
故答案为2.
一十五.垂径定理
16.(2020•湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是 3 .
【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,
在Rt△OCH中,OH==3,
所以CD与AB之间的距离是3.
故答案为3.
一十六.圆周角定理
17.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是 30° .
【解答】解:∵OC⊥AB,
∴,
∴∠AOD=∠BOD,
∵∠AOB=120°,
∴∠AOD=∠BOD=∠AOB=60°,
∴∠APD=∠AOD=×60°=30°,
故答案为:30°.
18.(2019•湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是 30° .
【解答】解:∵一条弧所对的圆周角的度数是15°,
∴它所对的圆心角的度数为2×15°=30°.
故答案为30°.
一十七.三角形的内切圆与内心
19.(2018•湖州)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是 70° .
【解答】解:∵△ABC的内切圆⊙O与BC边相切于点D,
∴OB平分∠ABC,OD⊥BC,
∴∠OBD=∠ABC=×40°=20°,
∴∠BOD=90°﹣∠OBD=70°.
故答案为70°.
一十八.作图—应用与设计作图
20.(2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的面积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是 13或49或9 (不包括5).
【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.
当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49
当DG=7,CG=4时,此时HG=3,四边形EFGH的面积为9.
故答案为13或49或9.
一十九.命题与定理
21.(2022•湖州)命题“如果|a|=|b|,那么a=b.”的逆命题是 如果a=b,那么|a|=|b| .
【解答】解:命题“如果|a|=|b|,那么a=b.”的逆命题是如果a=b,那么|a|=|b|,
故答案为:如果a=b,那么|a|=|b|.
二十.图形的剪拼
22.(2021•湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 ﹣1 .
【解答】解:∵地毯面积被平均分成了3份,
∴每一份的边长为=,
∴CD=3×=,
在Rt△ACD中,根据勾股定理可得AD==,
又根据剪裁可知BD=CK=1,
∴AB=AD﹣BD=﹣1.
故答案为:﹣1.
二十一.相似三角形的判定
23.(2020•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是 5 .
【解答】解:∵在Rt△ABC中,AC=1,BC=2,
∴AB=,AC:BC=1:2,
∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,
若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,
∵===,
∴△ABC∽△DFE,
∴∠DEF=∠C=90°,
∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.
故答案为:5.
二十二.相似三角形的判定与性质
24.(2022•湖州)如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,=.若DE=2,则BC的长是 6 .
【解答】解:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵=,DE=2,
∴,
∴BC=6,
故答案为:6.
二十三.锐角三角函数的定义
25.(2021•湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sinB的值是 .
【解答】解:∵∠ACB=90°,AC=1,AB=2,
∴sinB==.
故答案为:.
二十四.解直角三角形的应用
26.(2019•湖州)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO=85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为 120 cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
【解答】解:过O作OE⊥BD,过A作AF⊥BD,可得OE∥AF,
∵BO=DO,
∴OE平分∠BOD,
∴∠BOE=∠BOD=×74°=37°,
∴∠FAB=∠BOE=37°,
在Rt△ABF中,AB=85+65=150cm,
∴h=AF=AB•cos∠FAB=150×0.8=120cm,
故答案为:120
二十五.加权平均数
27.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 9.1 分.
【解答】解:该班的平均得分是:×(5×8+8×9+7×10)
=9.1(分).
故答案为:9.1.
二十六.概率公式
28.(2022•湖州)一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是 .
【解答】解:∵一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,
∴从这个箱子里随机摸出一个球,一共有6种可能性,其中出的球上所标数字大于4的有2种可能性,
∴出的球上所标数字大于4的概率是=,
故答案为:.
29.(2021•湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
【解答】解:只抽1张奖券恰好中奖的概率是=.
故答案为:.
二十七.列表法与树状图法
30.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,
第二次
第一次
白
红Ⅰ
红Ⅱ
白
白,白
白,红Ⅰ
白,红Ⅱ
红Ⅰ
红Ⅰ,白
红Ⅰ,红Ⅱ
红Ⅰ,红Ⅱ
红Ⅱ
红Ⅱ,白
红Ⅱ,红Ⅰ
红Ⅱ,红Ⅱ
则两次摸出的球都是红球的概率是 .
【解答】解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,
则两次摸出的球都是红球的概率为;
故答案为:.
相关试卷
这是一份新疆五年(2018-2022)中考数学卷真题分题型分层汇编-03填空题,共20页。
这是一份03填空题知识点分类-浙江省丽水市五年(2018-2022)中考数学真题分类汇编,共21页。试卷主要包含了*2的值是 ,的结果是 ,分解因式, 等内容,欢迎下载使用。
这是一份浙江省湖州市2018-2022中考数学真题汇编-01选题容易题,共12页。