|试卷下载
搜索
    上传资料 赚现金
    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题
    立即下载
    加入资料篮
    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题01
    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题02
    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题

    展开
    这是一份浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题,共27页。

    浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题

    一.估算无理数的大小
    1.(2021•湖州)已知a,b是两个连续整数,a<﹣1<b,则a,b分别是(  )
    A.﹣2,﹣1 B.﹣1,0 C.0,1 D.1,2
    二.解一元一次不等式
    2.(2021•湖州)不等式3x﹣1>5的解集是(  )
    A.x>2 B.x<2 C.x> D.x<
    三.一次函数图象上点的坐标特征
    3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )
    A.y=x+2 B.y=x+2 C.y=4x+2 D.y=x+2
    四.二次函数的图象
    4.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是(  )
    A.
    B.
    C.
    D.
    五.二次函数图象与系数的关系
    5.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是(  )
    A.a≤﹣1或≤a< B.≤a<
    C.a≤或a> D.a≤﹣1或a≥
    六.二次函数图象与几何变换
    6.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是(  )
    A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2
    七.抛物线与x轴的交点
    7.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是(  )
    A.1 B.2 C.3 D.4
    八.全等三角形的判定与性质
    8.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是(  )

    A.12 B.9 C.6 D.3
    9.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是(  )

    A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC
    九.角平分线的性质
    10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是(  )

    A.24 B.30 C.36 D.42
    一十.等腰三角形的性质
    11.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是(  )

    A.20° B.35° C.40° D.70°
    一十一.正方形的性质
    12.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是(  )

    A.1和1 B.1和2 C.2和1 D.2和2
    一十二.三角形的外接圆与外心
    13.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是(  )

    A.60° B.70° C.80° D.90°
    一十三.正多边形和圆
    14.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是(  )

    A.60° B.70° C.72° D.144°
    一十四.扇形面积的计算
    15.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是(  )

    A.π B.π+ C. D.2π
    一十五.作图—基本作图
    16.(2021•湖州)如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连接CO,DE.则下列结论错误的是(  )

    A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE
    一十六.作图—复杂作图
    17.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
    ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
    ②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
    ③连接OG.
    问:OG的长是多少?
    大臣给出的正确答案应是(  )

    A.r B.(1+)r C.(1+)r D.r
    一十七.翻折变换(折叠问题)
    18.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是(  )

    A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC
    19.(2018•湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不一定正确的是(  )

    A.AE=EF B.AB=2DE
    C.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等
    一十八.图形的剪拼
    20.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(  )

    A.2 B. C. D.
    一十九.平移的性质
    21.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是(  )

    A.2cm B.3cm C.4cm D.5cm
    二十.相似三角形的判定
    22.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是(  )

    A.4 B.6 C.2 D.3
    二十一.由三视图判断几何体
    23.(2020•湖州)已知某几何体的三视图如图所示,则该几何体可能是(  )

    A. B. C. D.
    二十二.随机事件
    24.(2021•湖州)下列事件中,属于不可能事件的是(  )
    A.经过红绿灯路口,遇到绿灯
    B.射击运动员射击一次,命中靶心
    C.班里的两名同学,他们的生日是同一天
    D.从一个只装有白球和红球的袋中摸球,摸出黄球
    二十三.列表法与树状图法
    25.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.

    参考答案与试题解析
    一.估算无理数的大小
    1.(2021•湖州)已知a,b是两个连续整数,a<﹣1<b,则a,b分别是(  )
    A.﹣2,﹣1 B.﹣1,0 C.0,1 D.1,2
    【解答】解:∵1<3<4,
    ∴1<<2,
    ∴0<﹣1<1,
    ∴a=0,b=1.
    故选:C.
    二.解一元一次不等式
    2.(2021•湖州)不等式3x﹣1>5的解集是(  )
    A.x>2 B.x<2 C.x> D.x<
    【解答】解:不等式3x﹣1>5,
    移项合并得:3x>6,
    解得:x>2.
    故选:A.
    三.一次函数图象上点的坐标特征
    3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )
    A.y=x+2 B.y=x+2 C.y=4x+2 D.y=x+2
    【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.
    ∴A(﹣1,0),B(﹣3,0)
    A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;
    B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;
    C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;
    D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;
    故选:C.
    四.二次函数的图象
    4.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是(  )
    A.
    B.
    C.
    D.
    【解答】解:解得或.
    故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).
    在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;
    在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;
    在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;
    在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;
    故选:D.
    五.二次函数图象与系数的关系
    5.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是(  )
    A.a≤﹣1或≤a< B.≤a<
    C.a≤或a> D.a≤﹣1或a≥
    【解答】解:∵抛物线的解析式为y=ax2﹣x+2.

    观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣,满足条件,可得a≤﹣1;
    当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,
    ∴a≥,
    ∵直线MN的解析式为y=﹣x+,
    由,消去y得到,3ax2﹣2x+1=0,
    ∵Δ>0,
    ∴a<,
    ∴≤a<满足条件,
    综上所述,满足条件的a的值为a≤﹣1或≤a<,
    故选:A.
    六.二次函数图象与几何变换
    6.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是(  )
    A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2
    【解答】解:∵抛物线y=x2向上平移3个单位,
    ∴平移后的解析式为:y=x2+3.
    故选:A.
    七.抛物线与x轴的交点
    7.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是(  )
    A.1 B.2 C.3 D.4
    【解答】解:方法一:不妨假设a>0.
    ①如图1中,P1,P2满足x1>x2+2,

    ∵P1P2∥AB,
    ∴S1=S2,故①错误.
    ②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,
    则S1>S2,故②错误,
    ③∵|x1﹣2|>|x2﹣2|>1,
    ∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,
    ∴S1>S2,故③正确,
    ④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.

    故选:A.
    方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),
    ∴该抛物线对称轴为x=2,
    当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,
    故①和②都不正确;
    当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,
    ∴|y1|>|y2|,
    ∴S1>S2,故③正确;
    当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,
    可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,
    所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;
    故选:A.
    八.全等三角形的判定与性质
    8.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是(  )

    A.12 B.9 C.6 D.3
    【解答】解:∵AB=AC,AD是△ABC的角平分线,
    ∴BD=CD=BC=3,AD⊥BC,
    在Rt△EBD中,∠EBC=45°,
    ∴ED=BD=3,
    ∴S△EBC=BC•ED=×6×3=9,
    故选:B.
    9.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是(  )

    A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC
    【解答】解:如图,连接OD.

    ∵OT是半径,OT⊥AB,
    ∴DT是⊙O的切线,
    ∵DC是⊙O的切线,
    ∴DC=DT,故选项A正确,
    ∵OA=OB,∠AOB=90°,
    ∴∠A=∠B=45°,
    ∵DC是切线,
    ∴CD⊥OC,
    ∴∠ACD=90°,
    ∴∠A=∠ADC=45°,
    ∴AC=CD=DT,
    ∴AC=CD=DT,故选项B正确,
    ∵OD=OD,OC=OT,DC=DT,
    ∴△DOC≌△DOT(SSS),
    ∴∠DOC=∠DOT,
    ∵OA=OB,OT⊥AB,∠AOB=90°,
    ∴∠AOT=∠BOT=45°,
    ∴∠DOT=∠DOC=22.5°,
    ∴∠BOD=∠ODB=67.5°,
    ∴BO=BD,故选项C正确,
    根据筛选法,
    故选:D.
    九.角平分线的性质
    10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是(  )

    A.24 B.30 C.36 D.42
    【解答】解:过D作DH⊥AB交BA的延长线于H,
    ∵BD平分∠ABC,∠BCD=90°,
    ∴DH=CD=4,
    ∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6×4+×9×4=30,
    故选:B.

    一十.等腰三角形的性质
    11.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是(  )

    A.20° B.35° C.40° D.70°
    【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,
    ∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.
    ∵CE是△ABC的角平分线,
    ∴∠ACE=∠ACB=35°.
    故选:B.
    一十一.正方形的性质
    12.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是(  )

    A.1和1 B.1和2 C.2和1 D.2和2
    【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:

    故选:D.
    一十二.三角形的外接圆与外心
    13.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是(  )

    A.60° B.70° C.80° D.90°
    【解答】解:∵点O为△ABC的外心,∠A=40°,
    ∴∠A=∠BOC,
    ∴∠BOC=2∠A=80°,
    故选:C.
    一十三.正多边形和圆
    14.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是(  )

    A.60° B.70° C.72° D.144°
    【解答】解:∵五边形ABCDE为正五边形,
    ∴∠ABC=∠C==108°,
    ∵CD=CB,
    ∴∠CBD==36°,
    ∴∠ABD=∠ABC﹣∠CBD=72°,
    故选:C.
    一十四.扇形面积的计算
    15.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是(  )

    A.π B.π+ C. D.2π
    【解答】解:如图,当P与A重合时,点C关于BP的对称点为C′,
    当P与D重合时,点C关于BP的对称点为C″,
    ∴点P从点A运动到点D,则线段CC1扫过的区域为:扇形BC'C''和△BCC'',
    在△BCD中,∵∠BCD=90°,BC=,CD=1,
    ∴tan∠DBC=,
    ∴∠DBC=30°,
    ∴∠CBC″=60°,
    ∵BC=BC''
    ∴△BCC''为等边三角形,
    ∴S扇形BC′C″==π,

    作C''F⊥BC于F,
    ∵△BCC''为等边三角形,
    ∴BF=,
    ∴C''F=tan60°×=,
    ∴S△BCC''=,
    ∴线段CC1扫过的区域的面积为:π+.
    故选:B.
    一十五.作图—基本作图
    16.(2021•湖州)如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连接CO,DE.则下列结论错误的是(  )

    A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE
    【解答】解:由作法得MN垂直平分BC,
    ∴OB=OC,BD=CD,OD⊥BC,所以A选项不符合题意;
    ∴OD平分∠BOC,
    ∴∠BOD=∠COD,所以B选项不符合题意;
    ∵AE=CE,DB=DC,
    ∴DE为△ABC的中位线,
    ∴DE∥AB,所以C选项不符合题意;
    DE=AB,
    而BD=BC,
    ∵AB≠BC,
    ∴BD≠DE,所以D选项符合题意.
    故选:D.
    一十六.作图—复杂作图
    17.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
    ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
    ②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
    ③连接OG.
    问:OG的长是多少?
    大臣给出的正确答案应是(  )

    A.r B.(1+)r C.(1+)r D.r
    【解答】解:如图连接CD,AC,DG,AG.

    ∵AD是⊙O直径,
    ∴∠ACD=90°,
    在Rt△ACD中,AD=2r,∠DAC=30°,
    ∴AC=r,
    ∵DG=AG=CA,OD=OA,
    ∴OG⊥AD,
    ∴∠GOA=90°,
    ∴OG===r,
    故选:D.
    一十七.翻折变换(折叠问题)
    18.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是(  )

    A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC
    【解答】解:∵四边形ABCD是矩形,
    ∴∠A=90°,BC=AD,
    ∵AB=6,BC=8,
    ∴BD===10,
    故A选项不符合题意;
    ∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,
    ∴AB=BG=6,CD=DH=6,
    ∴GH=BG+DH﹣BD=6+6﹣10=2,
    故B选项不符合题意;
    ∵四边形ABCD是矩形,
    ∴∠A=∠C=90°,
    ∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,
    ∴∠A=∠BGE=∠C=∠DHF=90°,
    ∴EG∥FH.
    故C选项不符合题意;
    ∵GH=2,
    ∴BH=DG=BG﹣GH=6﹣2=4,
    设FC=HF=x,则BF=8﹣x,
    ∴x2+42=(8﹣x)2,
    ∴x=3,
    ∴CF=3,
    ∴,
    又∵,
    ∴,
    若GF⊥BC,则GF∥CD,
    ∴,
    故D选项不符合题意.
    故选:D.
    19.(2018•湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不一定正确的是(  )

    A.AE=EF B.AB=2DE
    C.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等
    【解答】解:如图,连接CF,
    ∵点D是BC中点,
    ∴BD=CD,
    由折叠知,∠ACB=∠DFE,CD=DF,
    ∴BD=CD=DF,
    ∴△BFC是直角三角形,
    ∴∠BFC=90°,
    ∵BD=DF,
    ∴∠B=∠BFD,
    ∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,
    ∴AE=EF,故A正确,
    由折叠知,EF=CE,
    ∴AE=CE,
    ∵BD=CD,
    ∴DE是△ABC的中位线,
    ∴AB=2DE,故B正确,
    ∵AE=CE,
    ∴S△ADE=S△CDE,
    由折叠知,△CDE≌△FDE,
    ∴S△CDE=S△FDE,
    ∴S△ADE=S△FDE,故D正确,
    当AD=AC时,△ADF和△ADE的面积相等
    ∴C选项不一定正确,
    故选:C.

    一十八.图形的剪拼
    20.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(  )

    A.2 B. C. D.
    【解答】解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,
    由图形可知△AMC≌△FPE≌△BPD,
    ∴AM=PB,
    ∴PM=AB,
    ∵PM==,
    ∴AB=,
    故选:D.

    一十九.平移的性质
    21.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是(  )

    A.2cm B.3cm C.4cm D.5cm
    【解答】解:∵将△ABC沿BC方向平移1cm得到对应的△A'B'C',
    ∴BB′=CC′=1(cm),
    ∵B'C=2(cm),
    ∴BC′=BB′+B′C+CC′=1+2+1=4(cm),
    故选:C.
    二十.相似三角形的判定
    22.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是(  )

    A.4 B.6 C.2 D.3
    【解答】解:如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,
    根据勾股定理得:PM===2.
    故选:C.

    二十一.由三视图判断几何体
    23.(2020•湖州)已知某几何体的三视图如图所示,则该几何体可能是(  )

    A. B. C. D.
    【解答】解:∵主视图和左视图是三角形,
    ∴几何体是锥体,
    ∵俯视图的大致轮廓是圆,
    ∴该几何体是圆锥.
    故选:A.
    二十二.随机事件
    24.(2021•湖州)下列事件中,属于不可能事件的是(  )
    A.经过红绿灯路口,遇到绿灯
    B.射击运动员射击一次,命中靶心
    C.班里的两名同学,他们的生日是同一天
    D.从一个只装有白球和红球的袋中摸球,摸出黄球
    【解答】解:A、经过红绿灯路口,遇到绿灯是随机事件,故本选项不符合题意;
    B、射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
    C、班里的两名同学,他们的生日是同一天是随机事件,故本选项不符合题意;
    D、从一个只装有白球和红球的袋中摸球,摸出黄球是不可能事件,故本选项符合题意;
    故选:D.
    二十三.列表法与树状图法
    25.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是(  )
    A. B. C. D.
    【解答】解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为=,
    故选:C.
    相关试卷

    新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升): 这是一份新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升),共16页。试卷主要包含了单选题等内容,欢迎下载使用。

    浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题: 这是一份浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题,共15页。试卷主要包含了计算,3+×8,解一元一次不等式组,解分式方程等内容,欢迎下载使用。

    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题: 这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题,共28页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map