浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题
展开浙江省湖州市2018-2022中考数学真题汇编-02选题题基础题、提升题
一.估算无理数的大小
1.(2021•湖州)已知a,b是两个连续整数,a<﹣1<b,则a,b分别是( )
A.﹣2,﹣1 B.﹣1,0 C.0,1 D.1,2
二.解一元一次不等式
2.(2021•湖州)不等式3x﹣1>5的解集是( )
A.x>2 B.x<2 C.x> D.x<
三.一次函数图象上点的坐标特征
3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是( )
A.y=x+2 B.y=x+2 C.y=4x+2 D.y=x+2
四.二次函数的图象
4.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( )
A.
B.
C.
D.
五.二次函数图象与系数的关系
5.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A.a≤﹣1或≤a< B.≤a<
C.a≤或a> D.a≤﹣1或a≥
六.二次函数图象与几何变换
6.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是( )
A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2
七.抛物线与x轴的交点
7.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
八.全等三角形的判定与性质
8.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )
A.12 B.9 C.6 D.3
9.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是( )
A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC
九.角平分线的性质
10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )
A.24 B.30 C.36 D.42
一十.等腰三角形的性质
11.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )
A.20° B.35° C.40° D.70°
一十一.正方形的性质
12.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )
A.1和1 B.1和2 C.2和1 D.2和2
一十二.三角形的外接圆与外心
13.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
一十三.正多边形和圆
14.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是( )
A.60° B.70° C.72° D.144°
一十四.扇形面积的计算
15.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是( )
A.π B.π+ C. D.2π
一十五.作图—基本作图
16.(2021•湖州)如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连接CO,DE.则下列结论错误的是( )
A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE
一十六.作图—复杂作图
17.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连接OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
一十七.翻折变换(折叠问题)
18.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )
A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC
19.(2018•湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不一定正确的是( )
A.AE=EF B.AB=2DE
C.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等
一十八.图形的剪拼
20.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )
A.2 B. C. D.
一十九.平移的性质
21.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是( )
A.2cm B.3cm C.4cm D.5cm
二十.相似三角形的判定
22.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是( )
A.4 B.6 C.2 D.3
二十一.由三视图判断几何体
23.(2020•湖州)已知某几何体的三视图如图所示,则该几何体可能是( )
A. B. C. D.
二十二.随机事件
24.(2021•湖州)下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.射击运动员射击一次,命中靶心
C.班里的两名同学,他们的生日是同一天
D.从一个只装有白球和红球的袋中摸球,摸出黄球
二十三.列表法与树状图法
25.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
参考答案与试题解析
一.估算无理数的大小
1.(2021•湖州)已知a,b是两个连续整数,a<﹣1<b,则a,b分别是( )
A.﹣2,﹣1 B.﹣1,0 C.0,1 D.1,2
【解答】解:∵1<3<4,
∴1<<2,
∴0<﹣1<1,
∴a=0,b=1.
故选:C.
二.解一元一次不等式
2.(2021•湖州)不等式3x﹣1>5的解集是( )
A.x>2 B.x<2 C.x> D.x<
【解答】解:不等式3x﹣1>5,
移项合并得:3x>6,
解得:x>2.
故选:A.
三.一次函数图象上点的坐标特征
3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是( )
A.y=x+2 B.y=x+2 C.y=4x+2 D.y=x+2
【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.
∴A(﹣1,0),B(﹣3,0)
A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;
B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;
C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;
D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;
故选:C.
四.二次函数的图象
4.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( )
A.
B.
C.
D.
【解答】解:解得或.
故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).
在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;
在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;
在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;
在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;
故选:D.
五.二次函数图象与系数的关系
5.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
A.a≤﹣1或≤a< B.≤a<
C.a≤或a> D.a≤﹣1或a≥
【解答】解:∵抛物线的解析式为y=ax2﹣x+2.
观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣,满足条件,可得a≤﹣1;
当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,
∴a≥,
∵直线MN的解析式为y=﹣x+,
由,消去y得到,3ax2﹣2x+1=0,
∵Δ>0,
∴a<,
∴≤a<满足条件,
综上所述,满足条件的a的值为a≤﹣1或≤a<,
故选:A.
六.二次函数图象与几何变换
6.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是( )
A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)2
【解答】解:∵抛物线y=x2向上平移3个单位,
∴平移后的解析式为:y=x2+3.
故选:A.
七.抛物线与x轴的交点
7.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【解答】解:方法一:不妨假设a>0.
①如图1中,P1,P2满足x1>x2+2,
∵P1P2∥AB,
∴S1=S2,故①错误.
②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,
则S1>S2,故②错误,
③∵|x1﹣2|>|x2﹣2|>1,
∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,
∴S1>S2,故③正确,
④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.
故选:A.
方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),
∴该抛物线对称轴为x=2,
当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,
故①和②都不正确;
当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,
∴|y1|>|y2|,
∴S1>S2,故③正确;
当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,
可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,
所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;
故选:A.
八.全等三角形的判定与性质
8.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )
A.12 B.9 C.6 D.3
【解答】解:∵AB=AC,AD是△ABC的角平分线,
∴BD=CD=BC=3,AD⊥BC,
在Rt△EBD中,∠EBC=45°,
∴ED=BD=3,
∴S△EBC=BC•ED=×6×3=9,
故选:B.
9.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是( )
A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC
【解答】解:如图,连接OD.
∵OT是半径,OT⊥AB,
∴DT是⊙O的切线,
∵DC是⊙O的切线,
∴DC=DT,故选项A正确,
∵OA=OB,∠AOB=90°,
∴∠A=∠B=45°,
∵DC是切线,
∴CD⊥OC,
∴∠ACD=90°,
∴∠A=∠ADC=45°,
∴AC=CD=DT,
∴AC=CD=DT,故选项B正确,
∵OD=OD,OC=OT,DC=DT,
∴△DOC≌△DOT(SSS),
∴∠DOC=∠DOT,
∵OA=OB,OT⊥AB,∠AOB=90°,
∴∠AOT=∠BOT=45°,
∴∠DOT=∠DOC=22.5°,
∴∠BOD=∠ODB=67.5°,
∴BO=BD,故选项C正确,
根据筛选法,
故选:D.
九.角平分线的性质
10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是( )
A.24 B.30 C.36 D.42
【解答】解:过D作DH⊥AB交BA的延长线于H,
∵BD平分∠ABC,∠BCD=90°,
∴DH=CD=4,
∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6×4+×9×4=30,
故选:B.
一十.等腰三角形的性质
11.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )
A.20° B.35° C.40° D.70°
【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,
∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.
∵CE是△ABC的角平分线,
∴∠ACE=∠ACB=35°.
故选:B.
一十一.正方形的性质
12.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )
A.1和1 B.1和2 C.2和1 D.2和2
【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:
故选:D.
一十二.三角形的外接圆与外心
13.(2021•湖州)如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
【解答】解:∵点O为△ABC的外心,∠A=40°,
∴∠A=∠BOC,
∴∠BOC=2∠A=80°,
故选:C.
一十三.正多边形和圆
14.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是( )
A.60° B.70° C.72° D.144°
【解答】解:∵五边形ABCDE为正五边形,
∴∠ABC=∠C==108°,
∵CD=CB,
∴∠CBD==36°,
∴∠ABD=∠ABC﹣∠CBD=72°,
故选:C.
一十四.扇形面积的计算
15.(2021•湖州)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是( )
A.π B.π+ C. D.2π
【解答】解:如图,当P与A重合时,点C关于BP的对称点为C′,
当P与D重合时,点C关于BP的对称点为C″,
∴点P从点A运动到点D,则线段CC1扫过的区域为:扇形BC'C''和△BCC'',
在△BCD中,∵∠BCD=90°,BC=,CD=1,
∴tan∠DBC=,
∴∠DBC=30°,
∴∠CBC″=60°,
∵BC=BC''
∴△BCC''为等边三角形,
∴S扇形BC′C″==π,
作C''F⊥BC于F,
∵△BCC''为等边三角形,
∴BF=,
∴C''F=tan60°×=,
∴S△BCC''=,
∴线段CC1扫过的区域的面积为:π+.
故选:B.
一十五.作图—基本作图
16.(2021•湖州)如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线.按下列步骤作图:①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连接CO,DE.则下列结论错误的是( )
A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE
【解答】解:由作法得MN垂直平分BC,
∴OB=OC,BD=CD,OD⊥BC,所以A选项不符合题意;
∴OD平分∠BOC,
∴∠BOD=∠COD,所以B选项不符合题意;
∵AE=CE,DB=DC,
∴DE为△ABC的中位线,
∴DE∥AB,所以C选项不符合题意;
DE=AB,
而BD=BC,
∵AB≠BC,
∴BD≠DE,所以D选项符合题意.
故选:D.
一十六.作图—复杂作图
17.(2018•湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;
②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;
③连接OG.
问:OG的长是多少?
大臣给出的正确答案应是( )
A.r B.(1+)r C.(1+)r D.r
【解答】解:如图连接CD,AC,DG,AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,∠DAC=30°,
∴AC=r,
∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,
∴OG===r,
故选:D.
一十七.翻折变换(折叠问题)
18.(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )
A.BD=10 B.HG=2 C.EG∥FH D.GF⊥BC
【解答】解:∵四边形ABCD是矩形,
∴∠A=90°,BC=AD,
∵AB=6,BC=8,
∴BD===10,
故A选项不符合题意;
∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,
∴AB=BG=6,CD=DH=6,
∴GH=BG+DH﹣BD=6+6﹣10=2,
故B选项不符合题意;
∵四边形ABCD是矩形,
∴∠A=∠C=90°,
∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,
∴∠A=∠BGE=∠C=∠DHF=90°,
∴EG∥FH.
故C选项不符合题意;
∵GH=2,
∴BH=DG=BG﹣GH=6﹣2=4,
设FC=HF=x,则BF=8﹣x,
∴x2+42=(8﹣x)2,
∴x=3,
∴CF=3,
∴,
又∵,
∴,
若GF⊥BC,则GF∥CD,
∴,
故D选项不符合题意.
故选:D.
19.(2018•湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连接AD,则下列结论不一定正确的是( )
A.AE=EF B.AB=2DE
C.△ADF和△ADE的面积相等 D.△ADE和△FDE的面积相等
【解答】解:如图,连接CF,
∵点D是BC中点,
∴BD=CD,
由折叠知,∠ACB=∠DFE,CD=DF,
∴BD=CD=DF,
∴△BFC是直角三角形,
∴∠BFC=90°,
∵BD=DF,
∴∠B=∠BFD,
∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,
∴AE=EF,故A正确,
由折叠知,EF=CE,
∴AE=CE,
∵BD=CD,
∴DE是△ABC的中位线,
∴AB=2DE,故B正确,
∵AE=CE,
∴S△ADE=S△CDE,
由折叠知,△CDE≌△FDE,
∴S△CDE=S△FDE,
∴S△ADE=S△FDE,故D正确,
当AD=AC时,△ADF和△ADE的面积相等
∴C选项不一定正确,
故选:C.
一十八.图形的剪拼
20.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )
A.2 B. C. D.
【解答】解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,
由图形可知△AMC≌△FPE≌△BPD,
∴AM=PB,
∴PM=AB,
∵PM==,
∴AB=,
故选:D.
一十九.平移的性质
21.(2022•湖州)如图,将△ABC沿BC方向平移1cm得到对应的△A'B'C'.若B'C=2cm,则BC′的长是( )
A.2cm B.3cm C.4cm D.5cm
【解答】解:∵将△ABC沿BC方向平移1cm得到对应的△A'B'C',
∴BB′=CC′=1(cm),
∵B'C=2(cm),
∴BC′=BB′+B′C+CC′=1+2+1=4(cm),
故选:C.
二十.相似三角形的判定
22.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是( )
A.4 B.6 C.2 D.3
【解答】解:如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,
根据勾股定理得:PM===2.
故选:C.
二十一.由三视图判断几何体
23.(2020•湖州)已知某几何体的三视图如图所示,则该几何体可能是( )
A. B. C. D.
【解答】解:∵主视图和左视图是三角形,
∴几何体是锥体,
∵俯视图的大致轮廓是圆,
∴该几何体是圆锥.
故选:A.
二十二.随机事件
24.(2021•湖州)下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.射击运动员射击一次,命中靶心
C.班里的两名同学,他们的生日是同一天
D.从一个只装有白球和红球的袋中摸球,摸出黄球
【解答】解:A、经过红绿灯路口,遇到绿灯是随机事件,故本选项不符合题意;
B、射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、班里的两名同学,他们的生日是同一天是随机事件,故本选项不符合题意;
D、从一个只装有白球和红球的袋中摸球,摸出黄球是不可能事件,故本选项符合题意;
故选:D.
二十三.列表法与树状图法
25.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
【解答】解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=,
故选:C.
新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升): 这是一份新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升),共16页。试卷主要包含了单选题等内容,欢迎下载使用。
浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题: 这是一份浙江省湖州市2018-2022中考数学真题汇编-04 解答题基础题,共15页。试卷主要包含了计算,3+×8,解一元一次不等式组,解分式方程等内容,欢迎下载使用。
浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题: 这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题,共28页。