终身会员
搜索
    上传资料 赚现金
    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题
    立即下载
    加入资料篮
    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题01
    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题02
    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题

    展开
    这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题,共28页。

    浙江省温州市五年(2018-2022)中考数学真题分类汇编-02选择题基础、提升题

    一.有理数的加法
    1.(2022•温州)计算9+(﹣3)的结果是(  )
    A.6 B.﹣6 C.3 D.﹣3
    二.列代数式
    2.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为(  )
    A.20a元 B.(20a+24)元
    C.(17a+3.6)元 D.(20a+3.6)元
    三.单项式乘单项式
    3.(2022•温州)化简(﹣a)3•(﹣b)的结果是(  )
    A.﹣3ab B.3ab C.﹣a3b D.a3b
    四.解一元一次方程
    4.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是(  )
    A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
    五.由实际问题抽象出二元一次方程组
    5.(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组(  )
    A. B.
    C. D.
    六.函数的图象
    6.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是(  )

    A. B.
    C. D.
    七.反比例函数系数k的几何意义
    7.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(  )

    A.4 B.3 C.2 D.
    八.反比例函数图象上点的坐标特征
    8.(2021•温州)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k的值为(  )

    A.2 B. C. D.2
    九.二次函数的性质
    9.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(  )
    A.有最大值﹣1,有最小值﹣2
    B.有最大值0,有最小值﹣1
    C.有最大值7,有最小值﹣1
    D.有最大值7,有最小值﹣2
    一十.二次函数图象上点的坐标特征
    10.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是(  )
    A.若c<0,则a<c<b B.若c<0,则a<b<c
    C.若c>0,则a<c<b D.若c>0,则a<b<c
    11.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则(  )
    A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
    一十一.勾股定理
    12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为(  )

    A. B. C.2 D.
    一十二.勾股定理的证明
    13.(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(  )

    A.20 B.24 C. D.
    一十三.平行四边形的性质
    14.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为(  )

    A.40° B.50° C.60° D.70°
    一十四.圆周角定理
    15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为(  )

    A.95° B.100° C.105° D.130°
    一十五.切线的性质
    16.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为(  )

    A.1 B.2 C. D.
    一十六.坐标与图形变化-平移
    17.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是(  )

    A.(1,0) B.(,) C.(1,) D.(﹣1,)
    一十七.相似三角形的判定与性质
    18.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为(  )

    A. B. C. D.
    19.(2019•温州)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连接EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为(  )

    A. B. C. D.
    20.(2020•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为(  )

    A.14 B.15 C.8 D.6
    一十八.位似变换
    21.(2021•温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为(  )

    A.8 B.9 C.10 D.15
    一十九.解直角三角形的应用
    22.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为(  )

    A.+1 B.sin2α+1 C.+1 D.cos2α+1
    23.(2019•温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为(  )

    A.米 B.米 C.米 D.米
    二十.解直角三角形的应用-仰角俯角问题
    24.(2020•温州)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为(  )

    A.(1.5+150tanα)米 B.(1.5+)米
    C.(1.5+150sinα)米 D.(1.5+)米
    二十一.简单几何体的三视图
    25.(2021•温州)直六棱柱如图所示,它的俯视图是(  )

    A. B.
    C. D.
    二十二.扇形统计图
    26.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有(  )

    A.75人 B.90人 C.108人 D.150人
    二十三.概率公式
    27.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(  )
    A. B. C. D.
    28.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(  )
    A. B. C. D.
    29.(2022•温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为(  )
    A. B. C. D.

    参考答案与试题解析
    一.有理数的加法
    1.(2022•温州)计算9+(﹣3)的结果是(  )
    A.6 B.﹣6 C.3 D.﹣3
    【解答】解:9+(﹣3)
    =+(9﹣3)
    =6.
    故选:A.
    二.列代数式
    2.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为(  )
    A.20a元 B.(20a+24)元
    C.(17a+3.6)元 D.(20a+3.6)元
    【解答】解:根据题意知:17a+(20﹣17)(a+1.2)=(20a+3.6)(元).
    故选:D.
    三.单项式乘单项式
    3.(2022•温州)化简(﹣a)3•(﹣b)的结果是(  )
    A.﹣3ab B.3ab C.﹣a3b D.a3b
    【解答】解:原式=﹣a3•(﹣b)
    =a3b.
    故选:D.
    四.解一元一次方程
    4.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是(  )
    A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x
    【解答】解:根据乘法分配律得:﹣(4x+2)=x,
    去括号得:﹣4x﹣2=x,
    故选:D.
    五.由实际问题抽象出二元一次方程组
    5.(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组(  )
    A. B.
    C. D.
    【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.
    故选:A.
    六.函数的图象
    6.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是(  )

    A. B.
    C. D.
    【解答】解:由题意可知:小聪某次从家出发,s米表示他离家的路程,所以C,D错误;
    小聪在凉亭休息10分钟,所以A正确,B错误.
    故选:A.
    七.反比例函数系数k的几何意义
    7.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(  )

    A.4 B.3 C.2 D.
    【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
    ∴点A的坐标为(1,1),点B的坐标为(2,),
    ∵AC∥BD∥y轴,
    ∴点C,D的横坐标分别为1,2,
    ∵点C,D在反比例函数y=(k>0)的图象上,
    ∴点C的坐标为(1,k),点D的坐标为(2,),
    ∴AC=k﹣1,BD=,
    ∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,
    ∵△OAC与△ABD的面积之和为,
    ∴,
    解得:k=3.
    故选:B.
    八.反比例函数图象上点的坐标特征
    8.(2021•温州)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k的值为(  )

    A.2 B. C. D.2
    【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,
    ∴四边形BDOE是矩形,
    ∴BD=OE=1,
    把y=1代入y=,求得x=k,
    ∴B(k,1),
    ∴OD=k,
    ∵OC=OD,
    ∴OC=k,
    ∵AC⊥x轴于点C,
    把x=k代入y=得,y=,
    ∴AE=AC=,
    ∵OC=EF=k,AF=﹣1=,
    在Rt△AEF中,AE2=EF2+AF2,
    ∴()2=(k)2+()2,解得k=±,
    ∵在第一象限,
    ∴k=,
    故选:B.

    九.二次函数的性质
    9.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(  )
    A.有最大值﹣1,有最小值﹣2
    B.有最大值0,有最小值﹣1
    C.有最大值7,有最小值﹣1
    D.有最大值7,有最小值﹣2
    【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,
    ∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,
    当x=﹣1时,有最大值为y=9﹣2=7.
    故选:D.
    一十.二次函数图象上点的坐标特征
    10.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是(  )
    A.若c<0,则a<c<b B.若c<0,则a<b<c
    C.若c>0,则a<c<b D.若c>0,则a<b<c
    【解答】解:∵抛物线y=(x﹣1)2﹣2,
    ∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,
    ∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,
    ∴若c<0,则c<a<b,故选项A、B均不符合题意;
    若c>0,则a<b<c,故选项C不符合题意,选项D符合题意;
    故选:D.
    11.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则(  )
    A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
    【解答】解:抛物线的对称轴为直线x=﹣=﹣2,
    ∵a=﹣3<0,
    ∴x=﹣2时,函数值最大,
    又∵﹣3到﹣2的距离比1到﹣2的距离小,
    ∴y3<y1<y2.
    故选:B.
    一十一.勾股定理
    12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为(  )

    A. B. C.2 D.
    【解答】解:设CF交AB于P,过C作CN⊥AB于N,如图:

    设正方形JKLM边长为m,
    ∴正方形JKLM面积为m2,
    ∵正方形ABGF与正方形JKLM的面积之比为5,
    ∴正方形ABGF的面积为5m2,
    ∴AF=AB=m,
    由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF=GF,
    ∴△AFL≌△FGM(AAS),
    ∴AL=FM,
    设AL=FM=x,则FL=FM+ML=x+m,
    在Rt△AFL中,AL2+FL2=AF2,
    ∴x2+(x+m)2=(m)2,
    解得x=m或x=﹣2m(舍去),
    ∴AL=FM=m,FL=2m,
    ∵tan∠AFL====,
    ∴=,
    ∴AP=,
    ∴FP===m,BP=AB﹣AP=m﹣=,
    ∴AP=BP,即P为AB中点,
    ∵∠ACB=90°,
    ∴CP=AP=BP=,
    ∵∠CPN=∠APF,∠CNP=90°=∠FAP,
    ∴△CPN∽△FPA,
    ∴==,即==,
    ∴CN=m,PN=m,
    ∴AN=AP+PN=m,
    ∴tan∠BAC====,
    ∵△AEC和△BCH是等腰直角三角形,
    ∴△AEC∽△BCH,
    ∴=,
    ∵CE=+,
    ∴=,
    ∴CH=2,
    故选:C.
    一十二.勾股定理的证明
    13.(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(  )

    A.20 B.24 C. D.
    【解答】解:设小正方形的边长为x,
    ∵a=3,b=4,
    ∴AB=3+4=7,
    在Rt△ABC中,AC2+BC2=AB2,
    即(3+x)2+(x+4)2=72,
    整理得,x2+7x﹣12=0,
    而长方形面积为x2+7x+12=12+12=24
    ∴该矩形的面积为24,
    故选:B.

    一十三.平行四边形的性质
    14.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为(  )

    A.40° B.50° C.60° D.70°
    【解答】解:∵在△ABC中,∠A=40°,AB=AC,
    ∴∠C=(180°﹣40°)÷2=70°,
    ∵四边形BCDE是平行四边形,
    ∴∠E=70°.
    故选:D.
    一十四.圆周角定理
    15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为(  )

    A.95° B.100° C.105° D.130°
    【解答】解:∵OD⊥AB,OE⊥AC,
    ∴∠ADO=90°,∠AEO=90°,
    ∵∠DOE=130°,
    ∴∠BAC=360°﹣90°﹣90°﹣130°=50°,
    ∴∠BOC=2∠BAC=100°,
    故选:B.
    一十五.切线的性质
    16.(2020•温州)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为(  )

    A.1 B.2 C. D.
    【解答】解:连接OB,
    ∵四边形OABC是菱形,
    ∴OA=AB,
    ∵OA=OB,
    ∴OA=AB=OB,
    ∴∠AOB=60°,
    ∵BD是⊙O的切线,
    ∴∠DBO=90°,
    ∵OB=1,
    ∴BD=OB=,
    故选:D.

    一十六.坐标与图形变化-平移
    17.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是(  )

    A.(1,0) B.(,) C.(1,) D.(﹣1,)
    【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),
    所以图形向右平移1个单位长度,
    所以点B的对应点B'的坐标为(0+1,),即(1,),
    故选:C.
    一十七.相似三角形的判定与性质
    18.(2021•温州)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为(  )

    A. B. C. D.
    【解答】解:如图,过点G作GT⊥CF交CF的延长线于T,设BH交CF于M,AE交DF于N.设BE=AN=CM=DF=a,则AE=BM=CF=DN=2a,

    ∴EN=EM=MF=FN=a,
    ∵四边形ENFM是正方形,
    ∴∠EFH=∠TFG=45°,∠NFE=∠DFG=45°,
    ∵GT⊥TF,DF⊥DG,
    ∴∠TGF=∠TFG=∠DFG=∠DGF=45°,
    ∴TG=FT=DF=DG=a,
    ∴CT=3a,CG==a,
    ∵MH∥TG,
    ∴△CMH∽△CTG,
    ∴CM:CT=MH:TG=1:3,
    ∴MH=a,
    ∴BH=2a+a=a,
    ∴==,
    故选:C.
    19.(2019•温州)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连接EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为(  )

    A. B. C. D.
    【解答】解:如图,连接AL,GL,PF.

    由题意:S矩形AMLD=S阴=a2﹣b2,PH=,
    ∵点A,L,G在同一直线上,AM∥GN,
    ∴△AML∽△GNL,
    ∴=,
    ∴=,
    整理得a=3b,
    ∴===,
    故选:C.
    20.(2020•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为(  )

    A.14 B.15 C.8 D.6
    【解答】解:如图,连接EC,CH.设AB交CR于J.

    ∵四边形ACDE,四边形BCIH都是正方形,
    ∴∠ACE=∠BCH=45°,
    ∵∠ACB=90°,∠BCI=90°,
    ∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=180°
    ∴B,C,D共线,A,C,I共线,E、C、H共线,
    ∵DE∥AI∥BH,
    ∴∠CEP=∠CHQ,
    ∵∠ECP=∠QCH,
    ∴△ECP∽△HCQ,
    ∴===,
    ∵PQ=15,
    ∴PC=5,CQ=10,
    ∵EC:CH=1:2,
    ∴AC:BC=1:2,设AC=a,BC=2a,
    ∵PQ⊥CR,CR⊥AB,
    ∴CQ∥AB,
    ∵AC∥BQ,CQ∥AB,
    ∴四边形ABQC是平行四边形,
    ∴AB=CQ=10,
    ∵AC2+BC2=AB2,
    ∴5a2=100,
    ∴a=2(负根已经舍弃),
    ∴AC=2,BC=4,
    ∵•AC•BC=•AB•CJ,
    ∴CJ==4,
    ∵JR=AF=AB=10,
    ∴CR=CJ+JR=14,
    故选:A.
    一十八.位似变换
    21.(2021•温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为(  )

    A.8 B.9 C.10 D.15
    【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,
    ∴=,即=,
    解得,A′B′=9,
    故选:B.
    一十九.解直角三角形的应用
    22.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为(  )

    A.+1 B.sin2α+1 C.+1 D.cos2α+1
    【解答】解:∵AB=BC=1,
    在Rt△OAB中,sinα=,
    ∴OB=,
    在Rt△OBC中,
    OB2+BC2=OC2,
    ∴OC2=()2+12=.
    故选:A.
    23.(2019•温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为(  )

    A.米 B.米 C.米 D.米
    【解答】解:作AD⊥BC于点D,
    则BD=0.3=,
    ∵cosα=,
    ∴cosα=,
    解得,AB=米,
    故选:B.

    二十.解直角三角形的应用-仰角俯角问题
    24.(2020•温州)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为(  )

    A.(1.5+150tanα)米 B.(1.5+)米
    C.(1.5+150sinα)米 D.(1.5+)米
    【解答】解:过点A作AE⊥BC,E为垂足,如图所示:
    则四边形ADCE为矩形,AE=150米,
    ∴CE=AD=1.5米,
    在△ABE中,∵tanα==,
    ∴BE=150tanα,
    ∴BC=CE+BE=(1.5+150tanα)(米),
    故选:A.

    二十一.简单几何体的三视图
    25.(2021•温州)直六棱柱如图所示,它的俯视图是(  )

    A. B.
    C. D.
    【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,
    故选:C.
    二十二.扇形统计图
    26.(2022•温州)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有(  )

    A.75人 B.90人 C.108人 D.150人
    【解答】解:本次参加课外兴趣小组的人数为:60÷20%=300(人),
    劳动实践小组有:300×30%=90(人),
    故选:B.
    二十三.概率公式
    27.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(  )
    A. B. C. D.
    【解答】解:从中任意抽取1张,是“红桃”的概率为,
    故选:A.
    28.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(  )
    A. B. C. D.
    【解答】解:∵袋子中共有10个小球,其中白球有2个,
    ∴摸出一个球是白球的概率是=,
    故选:D.
    29.(2022•温州)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为(  )
    A. B. C. D.
    【解答】解:因为1到9共9个自然数.是偶数的有4个,
    所以正面的数是偶数的概率为.
    故选:C.
    相关试卷

    新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升): 这是一份新疆五年(2018-2022)中考数学卷真题分题型分层汇编-02选择题(基础提升),共16页。试卷主要包含了单选题等内容,欢迎下载使用。

    02选择题基础题、提升题-浙江台州市五年(2018-2022)中考数学真题分类汇编: 这是一份02选择题基础题、提升题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共25页。

    浙江省温州市五年(2018-2022)中考数学真题分类汇编-01选择题容易题: 这是一份浙江省温州市五年(2018-2022)中考数学真题分类汇编-01选择题容易题,共10页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map