年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖北省宜昌市夷陵区中考联考数学试题含解析

    2022届湖北省宜昌市夷陵区中考联考数学试题含解析第1页
    2022届湖北省宜昌市夷陵区中考联考数学试题含解析第2页
    2022届湖北省宜昌市夷陵区中考联考数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省宜昌市夷陵区中考联考数学试题含解析

    展开

    这是一份2022届湖北省宜昌市夷陵区中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,-2的倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )

    A.x>1 B.x≥1 C.x>3 D.x≥3
    3.二次函数的图像如图所示,下列结论正确是( )

    A. B. C. D.有两个不相等的实数根
    4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是(  )

    A.60° B.45° C.15° D.90°
    5.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
    得分(分)
    60
    70
    80
    90
    100
    人数(人)
    7
    12
    10
    8
    3
    则得分的众数和中位数分别为(  )
    A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
    7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )

    A. B.2 C. D.
    8.-2的倒数是( )
    A.-2 B. C. D.2
    9.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    10.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.且 B. C.且 D.
    11.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
    A. B.
    C. D.
    12.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.

    14.一个正四边形的内切圆半径与外接圆半径之比为:_________________
    15.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)

    16.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .

    17.一元二次方程x2﹣4=0的解是._________
    18.不等式组的整数解是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解分式方程:=
    20.(6分)综合与探究
    如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
    (1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
    (2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
    ①当点G与点D重合时,求平移距离m的值;
    ②用含x的式子表示平移距离m,并求m的最大值;
    (3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.

    21.(6分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
    (1)判断直线l与圆O的关系,并说明理由;
    (2)若的平分线BF交AD于点F,求证:;
    (3)在(2)的条件下,若,,求AF的长.

    22.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.
    (1)求日均销售量p(桶)与销售单价x(元)的函数关系;
    (2)若该经营部希望日均获利1350元,那么销售单价是多少?

    23.(8分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,
    (1)求DF的长;
    (2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

    24.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
    25.(10分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
    (1)函数的自变量x的取值范围是   ;
    (2)列出y与x的几组对应值.请直接写出m的值,m=   ;
    (3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
    (4)结合函数的图象,写出函数的一条性质.


    26.(12分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

    27.(12分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)请添加一个条件使四边形BEDF为菱形.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.
    考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.
    2、C
    【解析】
    试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
    则该不等式组的解集是x>1.
    故选C.
    考点:在数轴上表示不等式的解集.
    3、C
    【解析】
    【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
    【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
    ∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
    当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
    ∵抛物线的顶点为(1,3),
    ∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
    故选C.
    【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
    4、C
    【解析】
    试题解析:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵,
    ∴∠C′AB′=60°.
    ∴∠CAC′=60°-45°=15°,
    鱼竿转过的角度是15°.
    故选C.
    考点:解直角三角形的应用.
    5、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
    6、C
    【解析】
    解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
    故选C.
    【点睛】
    本题考查数据分析.
    7、C
    【解析】
    过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
    【详解】
    过O作OC⊥AB,交圆O于点D,连接OA,

    由折叠得到CD=OC=OD=1cm,
    在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
    即AC2+1=4,
    解得:AC=cm,
    则AB=2AC=2cm.
    故选C.
    【点睛】
    此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
    8、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    9、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    10、A
    【解析】
    根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
    【详解】
    ∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
    故选B.
    【点睛】
    本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
    11、D
    【解析】
    试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
    解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
    ∴△≥0,
    ∴4﹣4(k+1)≥0,
    解得k≤0,
    ∵x1+x2=﹣2,x1•x2=k+1,
    ∴﹣2﹣(k+1)<﹣1,
    解得k>﹣2,
    不等式组的解集为﹣2<k≤0,
    在数轴上表示为:

    故选D.
    点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
    12、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、8
    【解析】
    试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.
    过B 点作于点,与交于点,
    设AF=x,,

    ,(负值舍去).
    故BD+DE的值是8
    故答案为8

    考点:轴对称-最短路线问题.
    14、
    【解析】
    如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=OH即可解答.
    【详解】
    解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,

    则OH为正方形ABCD的内切圆的半径,
    ∵∠OAB=45°,
    ∴OA=OH,

    即一个正四边形的内切圆半径与外接圆半径之比为,
    故答案为:.
    【点睛】
    本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.
    15、①②③
    【解析】
    ①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;
    ②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;
    ③根据三角形中位线定理可得出DF∥BC、DF=BC,进而可得出△ADF∽△ABC,再利用相似三角形的性质可得出,结论③正确.此题得解.
    【详解】
    解:①∵D、E、F分别为AB、BC、AC的中点,
    ∴DE、DF、EF为△ABC的中位线,
    ∴AD=AB=FE,AF=AC=FC,DF=BC=EC.
    在△ADF和△FEC中,

    ∴△ADF≌△FEC(SSS),结论①正确;
    ②∵E、F分别为BC、AC的中点,
    ∴EF为△ABC的中位线,
    ∴EF∥AB,EF=AB=AD,
    ∴四边形ADEF为平行四边形.
    ∵AB=AC,D、F分别为AB、AC的中点,
    ∴AD=AF,
    ∴四边形ADEF为菱形,结论②正确;
    ③∵D、F分别为AB、AC的中点,
    ∴DF为△ABC的中位线,
    ∴DF∥BC,DF=BC,
    ∴△ADF∽△ABC,
    ∴,结论③正确.
    故答案为①②③.
    【点睛】
    本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
    16、2
    【解析】
    试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
    考点:反比例函数系数k的几何意义.
    17、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    18、﹣1、0、1
    【解析】
    求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
    【详解】

    解不等式得:,
    解不等式得:,
    不等式组的解集为,
    不等式组的整数解为-1,0,1.
    故答案为:-1,0,1.
    【点睛】
    本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、x=1
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    方程两边都乘以x(x﹣2),得:x=1(x﹣2),
    解得:x=1,
    检验:x=1时,x(x﹣2)=1×1=1≠0,
    则分式方程的解为x=1.
    【点睛】
    本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    20、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
    【解析】
    (3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
    ②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
    (2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
    【详解】
    解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
    解得:,
    ∴抛物线的表达式为y=﹣x3+x+2,
    把E(﹣4,y)代入得:y=﹣6,
    ∴点E的坐标为(﹣4,﹣6).
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
    解得:,
    ∴直线BD的表达式为y=x﹣2.
    把x=0代入y=x﹣2得:y=﹣2,
    ∴D(0,﹣2).
    当点G与点D重合时,G的坐标为(0,﹣2).
    ∵GF∥x轴,
    ∴F的纵坐标为﹣2.
    将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
    解得:x=+3或x=﹣+3.
    ∵﹣4<x<4,
    ∴点F的坐标为(﹣+3,﹣2).
    ∴m=FG=﹣3.
    ②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
    ∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
    ∵﹣<0,
    ∴m有最大值,
    当x=0时,m的最大值为4.
    (2)当点F在x轴的左侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
    ∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
    解得:x=﹣3或x=4(舍去),
    ∴点F的坐标为(﹣3,0).
    当点F在x轴的右侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
    ∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
    解得:x=﹣3或x=﹣﹣3(舍去),
    ∴点F的坐标为(﹣3,).
    综上所述,点F的坐标为(﹣3,0)或(﹣3,).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    21、(1)直线l与相切,见解析;(2)见解析;(3)AF=.
    【解析】
    连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;
    先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;
    先求得BE的长,然后证明∽,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    【详解】
    直线l与相切.
    理由:如图1所示:连接OE.

    平分,





    直线l与相切.
    平分,

    又,

    又,


    由得.
    ,,
    ∽.
    ,即,解得;.

    故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.
    【点睛】
    本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键.
    22、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.
    【解析】
    (1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;
    【详解】
    (1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,
    根据题意得,
    解得k=﹣50,b=850,
    所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;
    (2)根据题意得一元二次方程 (x﹣5)(﹣50x+850)﹣250=1350,
    解得x1=9,x2=13(不合题意,舍去),
    ∵销售单价不得高于12元/桶,也不得低于7元/桶,
    ∴x=13不合题意,
    答:若该经营部希望日均获利1350元,那么销售单价是9元.
    【点睛】
    本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.
    23、(1)1m.(1)1.5 m.
    【解析】
    (1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;
    (1) 分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.
    【详解】
    解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=1 m,
    DF==1.
    答:DF长为1m.
    (1)分别做DM⊥AB,EN⊥AB,DH⊥EN,
    垂足分别为点M、N、H,
    在Rt△DBM中,sin∠DBM=,
    ∴DM=1•sin35°≈1.2.
    ∵∠EDC=∠CNB,∠DCE=∠NCB,
    ∴∠EDC=∠CBN=35°,
    在Rt△DEH中,cos∠DEH=,
    ∴EH=1.6•cos35°≈1.3.
    ∴EN=EH+HN=1.3+1.2=1.45≈1.5m.
    答:E点离墙面AB的最远距离为1.5 m.
    【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。
    24、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
    【解析】
    设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
    【详解】
    设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
    根据题意得:﹣=3,
    解得:x1=161,x2=﹣264(不合题意,舍去),
    经检验,x=161是原方程的解,
    ∴x+99=264,1320÷(x+99)=1.
    答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
    【点睛】
    本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
    25、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
    【解析】
    (1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
    (2)将y=代入函数解析式中求出x值即可;
    (2)描点、连线画出函数图象;
    (4)观察函数图象,写出函数的一条性质即可.
    【详解】
    解:(1)∵x+1≠0,∴x≠﹣1.
    故答案为x≠﹣1.
    (2)当y==时,解得:x=2.
    故答案为2.
    (2)描点、连线画出图象如图所示.
    (4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.

    【点睛】
    本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
    26、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
    27、见解析
    【解析】
    (1)根据平行四边形的性质可得AB∥DC,OB=OD,由平行线的性质可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EF⊥BD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形.
    【详解】
    (1)∵四边形ABCD是平行四边形,O是BD的中点,
    ∴AB∥DC,OB=OD,
    ∴∠OBE=∠ODF,
    又∵∠BOE=∠DOF,
    ∴△BOE≌△DOF(ASA),
    ∴EO=FO,
    ∴四边形BEDF是平行四边形;
    (2)EF⊥BD.
    ∵四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴平行四边形BEDF是菱形.
    【点睛】
    本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.

    相关试卷

    湖北省宜昌市夷陵区2023—2024学年九年级下学期4月期中数学试题:

    这是一份湖北省宜昌市夷陵区2023—2024学年九年级下学期4月期中数学试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省宜昌市夷陵区2021-2022学年中考数学全真模拟试题含解析:

    这是一份湖北省宜昌市夷陵区2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了计算tan30°的值等于,在,,则的值为,的倒数的绝对值是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。

    2022年湖北省宜昌市夷陵区研训中心达标名校中考联考数学试卷含解析:

    这是一份2022年湖北省宜昌市夷陵区研训中心达标名校中考联考数学试卷含解析,共22页。试卷主要包含了的算术平方根为,估计-1的值在,的绝对值是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map