2022届湖北省武汉市武昌区重点名校中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
A.1 B. C. D.
2.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
3.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
4.计算的结果是( )
A. B. C.1 D.2
5.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是
A.180个,160个 B.170个,160个
C.170个,180个 D.160个,200个
6.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )
A.2:5 B.2:3 C.3:5 D.3:2
7.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).
A. B. C. D.
8.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
9.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为( )
A.a≥ B.a> C.a≤ D.a>
10.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
11.下列解方程去分母正确的是( )
A.由,得2x﹣1=3﹣3x
B.由,得2x﹣2﹣x=﹣4
C.由,得2y-15=3y
D.由,得3(y+1)=2y+6
12.下列运算正确的是 ( )
A.2+a=3 B. =
C. D.=
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
14.当 __________时,二次函数 有最小值___________.
15.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
16.正十二边形每个内角的度数为 .
17.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.
18.阅读以下作图过程:
第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
(2)解方程:x(x﹣4)=2x﹣8
20.(6分)﹣(﹣1)2018+﹣()﹣1
21.(6分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
(1)求A种,B种树木每棵各多少元;
(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
22.(8分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
23.(8分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.
(1)由题意易知,,观察图,请猜想另外两组全等的三角形 ; ;
(2)求证:四边形是平行四边形;
(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
24.(10分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是 .用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.
25.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
26.(12分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.
求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.
27.(12分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.
详解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,
故选:C.
点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
2、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
3、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
4、A
【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
【详解】
.
故选A.
【点睛】
本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
5、B
【解析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;
160出现了2次,出现的次数最多,则众数是160;
故选B.
【点睛】
此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
6、B
【解析】
∵四边形ABCD是平行四边形,
∴AB∥CD
∴∠EAB=∠DEF,∠AFB=∠DFE
∴△DEF∽△BAF
∴
∵,
∴DE:AB=2:5
∵AB=CD,
∴DE:EC=2:3
故选B
7、B
【解析】
如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
【详解】
如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B
【点睛】
本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
8、D
【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
【详解】
当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选D.
【点睛】
本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
9、B
【解析】
方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
【详解】
①+②得:
解得:
故选:B.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
数的值.
10、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
11、D
【解析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
【详解】
A.由,得:2x﹣6=3﹣3x,此选项错误;
B.由,得:2x﹣4﹣x=﹣4,此选项错误;
C.由,得:5y﹣15=3y,此选项错误;
D.由,得:3( y+1)=2y+6,此选项正确.
故选D.
【点睛】
本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
12、D
【解析】
根据整式的混合运算计算得到结果,即可作出判断.
【详解】
A、2与a 不是同类项,不能合并,不符合题意;
B、 =,不符合题意;
C、原式=,不符合题意;
D、=,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
14、1 5
【解析】
二次函数配方,得:,所以,当x=1时,y有最小值5,
故答案为1,5.
15、
【解析】
根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.
【详解】
解:∵,
∴∠A=60°,
∴.
故答案为.
【点睛】
本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.
16、
【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.
【详解】
试题分析:正十二边形的每个外角的度数是:=30°,
则每一个内角的度数是:180°﹣30°=150°.
故答案为150°.
17、1
【解析】
根据弧长公式l=,可得r=,再将数据代入计算即可.
【详解】
解:∵l=,
∴r===1.
故答案为:1.
【点睛】
考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).
18、作图见解析,
【解析】
解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.
点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)3;(1)x1=4,x1=1.
【解析】
(1)根据有理数的混合运算法则计算即可;
(1)先移项,再提取公因式求解即可.
【详解】
解:(1)原式=8×(﹣)﹣4×+1
=8×﹣1+1
=3;
(1)移项得:x(x﹣4)﹣1(x﹣4)=0,
(x﹣4)(x﹣1)=0,
x﹣4=0,x﹣1=0,
x1=4,x1=1.
【点睛】
本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
20、-1.
【解析】
直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.
【详解】
原式=﹣1+1﹣3
=﹣1.
【点睛】
本题主要考查了实数运算,正确化简各数是解题的关键.
21、 (1) A种树每棵2元,B种树每棵80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.
【解析】
(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
【详解】
解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得
,解得 ,
答:A种树木每棵2元,B种树木每棵80元.
(2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.
又2-x≥0,解得x≤2.∴1≤x≤2.
设实际付款总额是y元,则y=0.9[2x+80(2-x)].
即y=18x+7 3.
∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+7 3=8 550(元).
答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元.
22、
【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
【详解】
解:
过点B作BD⊥AC,垂足为点D,
在Rt△ABD中,,
∵,AB=5,
∴AD=AB·cosA=5×=3,
∴BD=4,
∵AC=5,
∴DC=2,
∴BC=.
【点睛】
本题考查了锐角的三角函数和勾股定理的运用.
23、(1);(2)见解析;(3)存在,2
【解析】
(1)利用正方形的性质及全等三角形的判定方法证明全等即可;
(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;
(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案.
【详解】
解:(1)四边形是正方形,
,
,
,
,
,
在和中,
在和中,
,
故答案为;
(2)证明:由(1)可知,
,
四边形是平行四边形.
(3)解:存在,理由如下:
是等腰直角三角形,
最短时,的面积最小,
当时,最短,此时,
的面积最小为.
【点睛】
本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.
24、(1);(2).
【解析】
【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;
(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.
【详解】(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,
∴从四份听力材料中,任选一份是难的听力材料的概率是=,
故答案为;
(2)树状图如下:
∴P(两份材料都是难)=.
【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
25、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
26、(1)y=-.y=x-1.(1)x<2.
【解析】
分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.
详解:(1)∵, 点A(5,2),点B(2,3),
∴
又∵点C在y轴负半轴,点D在第二象限,
∴点C的坐标为(2,-1),点D的坐标为(-1,3).
∵点在反比例函数y=的图象上,
∴
∴反比例函数的表达式为
将A(5,2)、B(2,-1)代入y=kx+b,
,解得:
∴一次函数的表达式为.
(1)将代入,整理得:
∵
∴一次函数图象与反比例函数图象无交点.
观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,
∴不等式>kx+b的解集为x<2.
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
27、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).
【解析】
试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,
解得 ∴二次函数解析式为y=﹣x2+2x+4, 配方得y=﹣(x﹣1)2+5,
∴点M的坐标为(1,5);
(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:
∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F
把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)
∴1<5﹣m<3,解得2<m<4;
(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5) ∵MG=1,GC=5﹣4=1
∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),
∵NG=GC,GM=GC, ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,
由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点
①若有△PCM∽△BDC,则有
∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,
若点P在y轴右侧,作PH⊥y轴, ∵∠PCH=45°,CP= ∴PH==
把x=代入y=﹣x+4,解得y=, ∴P1();
同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P2();
②若有△PCM∽△CDB,则有 ∴CP==3 ∴PH=3÷=3,
若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7).
∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).
考点:二次函数综合题
湖北省武昌区C组联盟2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份湖北省武昌区C组联盟2021-2022学年中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
湖北省襄州区重点达标名校2022年中考数学对点突破模拟试卷含解析: 这是一份湖北省襄州区重点达标名校2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了点A关于原点对称的点的坐标是,下列运算正确的是等内容,欢迎下载使用。
2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析: 这是一份2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的值等于,下列各式正确的是等内容,欢迎下载使用。