2022届湖南省衡阳市耒阳市中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.计算36÷(﹣6)的结果等于( )
A.﹣6 B.﹣9 C.﹣30 D.6
2.如果t>0,那么a+t与a的大小关系是( )
A.a+t>a B.a+t 3.如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )
A. B. C. D.
4.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
A.有两个相等的实数根 B.有两个异号的实数根
C.有两个不相等的实数根 D.没有实数根
5.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70° B.65° C.60° D.55°
6.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )
A. B. C. D.
7.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
8. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
9.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是( )
A. B.
C. D.
10.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
11.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为( )cm
A.1 B.2 C.3 D.4
12.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.
14.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.
15.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为 (n为正整数).
16.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.
17.若m+=3,则m2+=_____.
18.若代数式在实数范围内有意义,则实数x的取值范围为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,直线与双曲线相交于、两点.
(1) ,点坐标为 .
(2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标
20.(6分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).
(1)求a,b的值;
(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
21.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程两个根均为正整数,求负整数m的值.
22.(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
23.(8分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.
(1)求;(直接写出结果)
(2)当AB=3,AC=5时,求的周长.
24.(10分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
25.(10分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
26.(12分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
(1)函数的自变量x的取值范围是 ;
(2)列出y与x的几组对应值.请直接写出m的值,m= ;
(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数的一条性质.
27.(12分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
分析:根据有理数的除法法则计算可得.
详解:31÷(﹣1)=﹣(31÷1)=﹣1.
故选A.
点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.
2、A
【解析】
试题分析:根据不等式的基本性质即可得到结果.
t>0,
∴a+t>a,
故选A.
考点:本题考查的是不等式的基本性质
点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.
3、B
【解析】
根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.
【详解】
解:由折叠性质可知:AE=DE=3
∴CE=AC-AE=4-3=1
在Rt△CED中,CD=
故选:B
【点睛】
本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.
4、A
【解析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
【详解】
∵函数的顶点的纵坐标为4,
∴直线y=4与抛物线只有一个交点,
∴方程ax2+bx+c﹣4=0有两个相等的实数根,
故选A.
【点睛】
本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
5、B
【解析】
根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
【详解】
∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
∴∠AA′C=45°,
∵∠1=20°,
∴∠B′A′C=45°-20°=25°,
∴∠A′B′C=90°-25°=65°,
∴∠B=65°.
故选B.
【点睛】
本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
6、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
∴点(m,n)在函数y=图象上的概率是:.
故选B.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
7、D
【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
【详解】
解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
8、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
9、C
【解析】
【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
【详解】∵pv=k(k为常数,k>0)
∴p=(p>0,v>0,k>0),
故选C.
【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
10、B
【解析】
分析:根据一元二次方程根的判别式判断即可.
详解:A、x2+6x+9=0.
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x.
x2-x=0.
△=(-1)2-4×1×0=1>0.
方程有两个不相等实数根;
C、x2+3=2x.
x2-2x+3=0.
△=(-2)2-4×1×3=-8<0,
方程无实根;
D、(x-1)2+1=0.
(x-1)2=-1,
则方程无实根;
故选B.
点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
11、C
【解析】
由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.
【详解】
如图,由题意得:
DA′=DA,EA′=EA,
∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF
=(DA+BD)+(BG+GF+CF)+(AE+CE)
=AB+BC+AC
=1+1+1=3(cm)
故选C.
【点睛】
本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.
12、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、16,3n+1.
【解析】
观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.
【详解】
由图可得,第1个图案基础图形的个数为4,
第2个图案基础图形的个数为7,7=4+3,
第3个图案基础图形的个数为10,10=4+3×2,
…,
第5个图案基础图形的个数为4+3(5−1)=16,
第n个图案基础图形的个数为4+3(n−1)=3n+1.
故答案为16,3n+1.
【点睛】
本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.
14、40°
【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.
【详解】
解:∵∠A=30°,∠APD=70°,
∴∠C=∠APD﹣∠A=40°,
∵∠B与∠C是对的圆周角,
∴∠B=∠C=40°.
故答案为40°.
【点睛】
此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.
15、.
【解析】
寻找规律: 由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,
∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且
A2B2=OA2=OB1=OA1;
A3B3=OA3=OB2=OA2=OA1;
A4B4=OA4=OB3=OA3=OA1;
……
.
又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.
16、∠A=∠C或∠ADC=∠ABC
【解析】
本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
【详解】
添加条件可以是:∠A=∠C或∠ADC=∠ABC.
∵添加∠A=∠C根据AAS判定△AOD≌△COB,
添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
故填空答案:∠A=∠C或∠ADC=∠ABC.
【点睛】
本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.
17、7
【解析】
分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.
详解:把m+=3两边平方得:(m+)2=m2++2=9,
则m2+=7,
故答案为:7
点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.
18、x≤1
【解析】
根据二次根式有意义的条件可求出x的取值范围.
【详解】
由题意可知:1﹣x≥0,
∴x≤1
故答案为:x≤1.
【点睛】
本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1),;(1),.
【解析】
(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
【详解】
解:(1)把点A(-1,a)代入一次函数y=x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(-1,3).
把点A(-1,3)代入反比例函数y=,
得:k=-3,
∴反比例函数的表达式y=-.
联立两个函数关系式成方程组得:
解得: 或
∴点B的坐标为(-3,1).
故答案为3,(-3,1);
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.
∵点B、B′关于x轴对称,点B的坐标为(-3,1),
∴点B′的坐标为(-3,-1),PB=PB′,
∵点A、A′关于y轴对称,点A的坐标为(-1,3),
∴点A′的坐标为(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
设直线A′B′的解析式为y=mx+n,
把A′,B′两点代入得:
解得:
∴直线A′B′的解析式为y=x+1.
令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
令x=0,则y=1,点Q的坐标为(0,1).
【点睛】
本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
20、(1)a=3,b=-2;(2) m≥8或m≤-2
【解析】
(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.
【详解】
(1)∵点A在图象上
∴
∴a=3
∴A(3,1)
∵点A在y=x+b图象上
∴1=3+b
∴b=-2
∴解析式y=x-2
(2)设直线y=x-2与x轴的交点为D
∴D(2,0)
①当点C在点A的上方如图(1)
∵直线y=-x+m与x轴交点为B
∴B(m,0)(m>3)
∵直线y=-x+m与直线y=x-2相交于点C
∴
解得:
∴C
∵S△ABC=S△BCD-S△ABD≥6
∴
∴m≥8
②若点C在点A下方如图2
∵S△ABC=S△BCD+S△ABD≥6
∴
∴m≤-2
综上所述,m≥8或m≤-2
【点睛】
此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
21、 (1)见解析;(2) m=-1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
【详解】
(1)∵△=(m+3)2﹣4(m+2)
=(m+1)2
∴无论m取何值,(m+1)2恒大于等于1
∴原方程总有两个实数根
(2)原方程可化为:(x-1)(x-m-2)=1
∴x1=1, x2=m+2
∵方程两个根均为正整数,且m为负整数
∴m=-1.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
22、48;105°;
【解析】
试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.
试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48-(4+12+14)=18(人),补全图形如下:
(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:
A1
A1
A2
A2
A1
√
√
A1
√
√
A2
√
√
A2
√
√
∴由上表可得:
考点:统计图、概率的计算.
23、(1)∠ADE=90°;
(2)△ABE的周长=1.
【解析】
试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°
(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1
试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;
(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,
∵MN是线段AC的垂直平分线,∴AE=CE,
∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.
考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长
24、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
25、﹣2
【解析】
【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
=x1+2xy+2y1﹣2y1+x1﹣1x1
=2xy,
当x=+1,y=﹣1时,
原式=2×(+1)×(﹣1)
=2×(3﹣2)
=﹣2.
【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
26、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
【解析】
(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
(2)将y=代入函数解析式中求出x值即可;
(2)描点、连线画出函数图象;
(4)观察函数图象,写出函数的一条性质即可.
【详解】
解:(1)∵x+1≠0,∴x≠﹣1.
故答案为x≠﹣1.
(2)当y==时,解得:x=2.
故答案为2.
(2)描点、连线画出图象如图所示.
(4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.
【点睛】
本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
27、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
[数学]湖南省衡阳市耒阳市2024年中考一模数学试题: 这是一份[数学]湖南省衡阳市耒阳市2024年中考一模数学试题,共7页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
【数学】湖南省衡阳市耒阳市2024年中考一模数学试题: 这是一份【数学】湖南省衡阳市耒阳市2024年中考一模数学试题,共7页。
2024年湖南省衡阳市耒阳市中考一模数学试题(原卷版+解析版): 这是一份2024年湖南省衡阳市耒阳市中考一模数学试题(原卷版+解析版),文件包含2024年湖南省衡阳市耒阳市中考一模数学试题原卷版docx、2024年湖南省衡阳市耒阳市中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。