2022届湖南省株洲市醴陵市中考联考数学试卷含解析
展开这是一份2022届湖南省株洲市醴陵市中考联考数学试卷含解析,共16页。试卷主要包含了小手盖住的点的坐标可能为,比1小2的数是等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
求证:∽.
证明:又,,,,∽.
A.B.C.D.
2.不等式组 的整数解有( )
A.0个B.5个C.6个D.无数个
3.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是( )
A.0个B.1个或2个
C.0个、1个或2个D.只有1个
4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为( )
A.15πcm2B.24πcm2C.39πcm2D.48πcm2
5.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣B.1C.D.﹣l
6.小手盖住的点的坐标可能为( )
A.B.C.D.
7.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )
A.40B.46C.48D.50
8.比1小2的数是( )
A.B.C.D.
9.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:
每天加工零件数的中位数和众数为( )
A.6,5B.6,6C.5,5D.5,6
10.在0,﹣2,3,四个数中,最小的数是( )
A.0B.﹣2C.3D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
12.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.
13.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
14.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
15.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.
16.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
17.规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.
三、解答题(共7小题,满分69分)
18.(10分)解方程(2x+1)2=3(2x+1)
19.(5分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
20.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).
请你根据上面的信息,解答下列问题.
(1)若A组的频数比B组小24,求频数直方图中的a,b的值;
(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;
(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?
21.(10分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.
22.(10分) (1)解方程组
(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
23.(12分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)
24.(14分)解方程组
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据平行线的性质可得到两组对应角相等,易得解题步骤;
【详解】
证明:,
,
又,
,
∽.
故选B.
【点睛】
本题考查了相似三角形的判定与性质;关键是证明三角形相似.
2、B
【解析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.
【详解】
解不等式x+3>0,得x>﹣3,
解不等式﹣x≥﹣2,得x≤2,
∴不等式组的解集为﹣3<x≤2,
∴整数解有:﹣2,﹣1,0,1,2共5个,
故选B.
【点睛】
本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.
3、C
【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
【详解】
∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
故选C.
【点睛】
考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
4、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
5、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
6、B
【解析】
根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.
【详解】
根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;
分析选项可得只有B符合.
故选:B.
【点睛】
此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
7、C
【解析】
∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
∴∠ABD=∠ACF,
又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
∵BF=AB+AF=12,∴3AF=12,∴AF=4,
∴AB=AC=2AF=8,
∴S△FBC= ×BF×AC=×12×8=48,故选C.
8、C
【解析】
1-2=-1,故选C
9、A
【解析】
根据众数、中位数的定义分别进行解答即可.
【详解】
由表知数据5出现了6次,次数最多,所以众数为5;
因为共有20个数据,
所以中位数为第10、11个数据的平均数,即中位数为=6,
故选A.
【点睛】
本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
10、B
【解析】
根据实数比较大小的法则进行比较即可.
【详解】
∵在这四个数中3>0,>0,-2<0,
∴-2最小.
故选B.
【点睛】
本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
二、填空题(共7小题,每小题3分,满分21分)
11、6
【解析】
已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
【详解】
∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
即x12=2 x1+1, x22=2 x2+1,
∴=
故答案为6.
【点睛】
本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
12、14
【解析】
取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.
【详解】
解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.
∵I是AE的中点,
∴ == =3,
则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.
故答案为14.
【点睛】
本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.
13、1
【解析】
根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
【详解】
∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
∴点C的坐标为(6,2),
∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,
故答案为1.
【点睛】
本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
14、>
【解析】
分别根据方差公式计算出甲、乙两人的方差,再比较大小.
【详解】
∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
故答案为:>.
【点睛】
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
15、
【解析】
若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.
【详解】
解:∵方程有两个实数根,
∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,
解得:k≤且k≠1,
故答案为k≤且k≠1.
【点睛】
此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
16、1.
【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
【详解】
解:∵CD⊥AB,AB=16,
∴AD=DB=8,
在Rt△OAD中,AB=16m,半径OA=10m,
∴OD==6,
∴CD=OC﹣OD=10﹣6=1(m).
故答案为1.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
17、
【解析】
根据题中的新定义化简所求方程,求出方程的解即可.
【详解】
根据题意得:x-×2=×1-,
x=,
解得:x=,
故答案为x=.
【点睛】
此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.
三、解答题(共7小题,满分69分)
18、x1=-,x2=1
【解析】
试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.
点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
19、证明见解析;.
【解析】
根据两组对边分别平行的四边形是平行四边形即可证明;
只要求出CD即可解决问题.
【详解】
证明:、E分别是AB、AC的中点
,
又
四边形CDEF为平行四边形
.
,
,
又为AB中点
,
在中,
,
,
四边形CDEF是平行四边形,
.
【点睛】
本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
20、(1)40(2)126°,1(3)940名
【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;
(2)利用360°乘以对应的比例即可求解;
(3)利用总人数乘以对应的百分比即可求解.
【详解】
(1)学生总数是24÷(20%﹣8%)=200(人),
则a=200×8%=16,b=200×20%=40;
(2)n=360×=126°.
C组的人数是:200×25%=1.
;
(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,
∴2000×47%=940(名)
答估计成绩优秀的学生有940名.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
21、
【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
【详解】
原式=×-1
=-1
=
=,
当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
原式=.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
22、(1);(2)当坐标为时,取得最小值为.
【解析】
(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
【详解】
解:(1)
①②得:
解得:
把代入②得,
则方程组的解为
(2 )由题意得:,
当坐标为时,取得最小值为.
【点睛】
此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
23、该雕塑的高度为(2+2)米.
【解析】
过点C作CD⊥AB,设CD=x,由∠CBD=45°知BD=CD=x米,根据tanA=列出关于x的方程,解之可得.
【详解】
解:如图,过点C作CD⊥AB,交AB延长线于点D,
设CD=x米,
∵∠CBD=45°,∠BDC=90°,
∴BD=CD=x米,
∵∠A=30°,AD=AB+BD=4+x,
∴tanA=,即,
解得:x=2+2,
答:该雕塑的高度为(2+2)米.
【点睛】
本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.
24、
【解析】
将②×3,再联立①②消未知数即可计算.
【详解】
解:
②得: ③
①+③得:
把代入③得
∴方程组的解为
【点睛】
本题考查二元一次方程组解法,关键是掌握消元法.
每天加工零件数
4
5
6
7
8
人数
3
6
5
4
2
类别
分数段
A
50.5~60.5
B
60.5~70.5
C
70.5~80.5
D
80.5~90.5
E
90.5~100.5
相关试卷
这是一份湖南省株洲市中考数学试卷(含解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省株洲市醴陵市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省株洲市醴陵市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。