2022届湖南省师大附中中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
2.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
3.抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
4.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )
A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人
5.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
6.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
7.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
8.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=的图象上的两个点,则一次函数y=kx+b的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
9.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
A.平均数 B.中位数 C.众数 D.方差
二、填空题(共7小题,每小题3分,满分21分)
11.若正多边形的一个外角是45°,则该正多边形的边数是_________.
12.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.
13.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
14.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.
15.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.
16.分解因式:x2y﹣6xy+9y=_____.
17.不等式的解集是________________
三、解答题(共7小题,满分69分)
18.(10分)一次函数的图象经过点和点,求一次函数的解析式.
19.(5分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AQ的长;(用含t的代数式表示)
(2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
(3)设△APQ的面积为S,求S与t的函数关系式;
(4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.
20.(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.
(1)测试不合格人数的中位数是 .
(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;
(3)在(2)的条件下补全条形统计图和扇形统计图.
21.(10分)图 1 和图 2 中,优弧纸片所在⊙O 的半径为 2,AB=2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A′.
发现:
(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA′= ;
(2)当 BA′与⊙O 相切时,如图 2,求折痕的长.
拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A′, O′,设∠MNP=α.
(1)当α=15°时,过点 A′作 A′C∥MN,如图 3,判断 A′C 与半圆 O 的位置关系,并说明理由;
(2)如图 4,当α= °时,NA′与半圆 O 相切,当α= °时,点 O′落在上.
(3)当线段 NO′与半圆 O 只有一个公共点 N 时,直接写出β的取值范围.
22.(10分)在中,,是边的中线,于,连结,点在射线上(与,不重合)
(1)如果
①如图1,
②如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;
(2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、、三者的数量关系(不需证明)
23.(12分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
24.(14分)解方程
(1)x1﹣1x﹣1=0
(1)(x+1)1=4(x﹣1)1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
2、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
3、C
【解析】
根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
【详解】
∵抛物线解析式为y=3(x-2)2+5,
∴二次函数图象的顶点坐标是(2,5),
故选C.
【点睛】
本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2536000人=2.536×106人.
故选C.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
7、B
【解析】
易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
【详解】
若点E在BC上时,如图
∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
∴∠CFE=∠AEB,
∵在△CFE和△BEA中,
,
∴△CFE∽△BEA,
由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
∴,
当y=时,代入方程式解得:x1=(舍去),x2=,
∴BE=CE=1,∴BC=2,AB=,
∴矩形ABCD的面积为2×=5;
故选B.
【点睛】
本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
8、C
【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即
根据k、b的值确定一次函数y=kx+b的图象经过的象限.
【详解】
解:把(2,2)代入,
得k=4,
把(b,﹣1﹣n2)代入得:
k=b(﹣1﹣n2),即,
∵k=4>0,<0,
∴一次函数y=kx+b的图象经过第一、三、四象限,
故选C.
【点睛】
本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k,b的符号是解题关键.
9、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
10、B
【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、1;
【解析】
根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.
【详解】
∵多边形外角和是360度,正多边形的一个外角是45°,
∴360°÷45°=1
即该正多边形的边数是1.
【点睛】
本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).
12、
【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
【详解】
如图,过点B作BD⊥AC于D,设AH=BC=2x,
∵AB=AC,AH⊥BC,
∴BH=CH=BC=x,
根据勾股定理得,AC==x,
S△ABC=BC•AH=AC•BD,
即•2x•2x=•x•BD,
解得BC=x,
所以,sin∠BAC=.
故答案为.
13、
【解析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.
【详解】
如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.
故答案为.
14、
【解析】
作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,
然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则S△ABC===
【详解】
如图作CD⊥AB,
∵tanA=2,设AD=x,CD=2x,
∴AC=x,∴BD=,
在Rt△CBD中BC2=BD2+CD2,
即52=4x2+,
x2=,
∴S△ABC===
【点睛】
此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.
15、15°
【解析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.
【详解】
解答:
连接OB,
∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,∴△AOB为等边三角形.
∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.
由圆周角定理得 ,
故答案为15°.
16、y(x﹣3)2
【解析】
本题考查因式分解.
解答:.
17、
【解析】
首先去分母进而解出不等式即可.
【详解】
去分母得,1-2x>15
移项得,-2x>15-1
合并同类项得,-2x>14
系数化为1,得x<-7.
故答案为x<-7.
【点睛】
此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
三、解答题(共7小题,满分69分)
18、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
19、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
【解析】
分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
(2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
(3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
(4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
详解:(1)如图1,
Rt△ABC中,∠A=30°,AB=8,
∴BC=AB=4,
∴AC=,
由题意得:CQ=t,
∴AQ=4﹣t;
(2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
②当PQ⊥AB时,如图2,
∵AQ=4﹣t,AP=8t,∠A=30°,
∴cos30°=,
∴,
t=;
③当PQ⊥AC时,如图3,
∵AQ=4﹣t,AP=8t,∠A=30°,
∴cos30°=,
∴
t=;
综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
(3)分两种情况:
①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,
∵∠A=30°,AP=8t,∠AGP=90°,
∴PG=4t,
∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
②当P在边BC上时,即1<t≤3,如图5,
由题意得:PB=2(t﹣1),
∴PC=4﹣2(t﹣1)=﹣2t+6,
∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
综上所述,S与t的函数关系式为:S=;
(4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
①当P在边AB上时,如图6,
AP=PQ,作PG⊥AC于G,则AG=GQ,
∵∠A=30°,AP=8t,∠AGP=90°,
∴PG=4t,
∴AG=4t,
由AQ=2AG得:4﹣t=8t,t=,
②当P在边AC上时,如图7,AQ=PQ,
Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
∴,
t=或﹣(舍),
综上所述,t的值为或.
点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
20、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.
【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;
(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;
(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.
【详解】
解:(1)将四次测试结果排序,得:30,40,50,60,
∴测试不合格人数的中位数是(40+50)÷2=1.
故答案为1;
(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),
∴第四次测试合格人数为1×2﹣18=72(人).
设这两次测试的平均增长率为x,
根据题意得:50(1+x)2=72,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),
∴这两次测试的平均增长率为20%;
(3)50×(1+20%)=60(人),
(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,
1﹣1%=55%.
补全条形统计图与扇形统计图如解图所示.
【点睛】
本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.
21、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或 45°≤α<90°.
【解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.
(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.
拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;
(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;
(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.
【详解】
发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,
∵⊙O的半径为2,AB=2,
∴OH==
在△BOH中,OH=1,BO=2
∴∠ABO=30°
∵图形沿BP折叠,得到点A的对称点A′.
∴∠OBA′=∠ABO=30°
∴∠ABA′=60°
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.
∵∠OBH=30°,∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.∴OG=OB=1.∴BG=.
∵OG⊥BP,∴BG=PG=.
∴BP=2.∴折痕的长为2
拓展:(1)相切.
分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,
∵A'C∥MN
∴四边形A'HOD是矩形
∴A'H=O
∵α=15°∴∠A'NH=30
∴OD=A'H=A'N=MN=2
∴A'C与半圆
(2)当NA′与半圆O相切时,则ON⊥NA′,
∴∠ONA′=2α=90°,
∴α=45
当O′在上时,连接MO′,则可知NO′=MN,
∴∠O′MN=0°
∴∠MNO′=60°,
∴α=30°,
故答案为:45°;30°.
(3)∵点P,M不重合,∴α>0,
由(2)可知当α增大到30°时,点O′在半圆上,
∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;
当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.
当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,
∴α<90°,
∴当45°≤α<90°线段BO′与半圆只有一个公共点B.
综上所述0°<α<30°或45°≤α<90°.
【点睛】
本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.
22、(1)①60;②.理由见解析;(2),理由见解析.
【解析】
(1)①根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;
②根据全等三角形的判定推出,根据全等的性质得出,
(2)如图2,求出,,求出,,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可.
【详解】
解:(1)①∵,,
∴,
∵,
∴,
∴是等边三角形,
∴.
故答案为60.
②如图1,结论:.理由如下:
∵,是的中点,,,
∴,,
∴,,,
∴,
∵,
∴,
∵线段绕点逆时针旋转得到线段,
∴,
在和中
,
∴,
∴.
(2)结论:.
理由:∵,是的中点,,,
∴,,
∴,,,
∴,
∵,
∴,
∵线段绕点逆时针旋转得到线段,
∴,
在和中
,
∴,
∴,
而,
∴,
在中,,
∴,
∴,
∴,
即.
【点睛】
本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似.
23、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
24、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
【解析】
(1)配方法解;
(1)因式分解法解.
【详解】
(1)x1﹣1x﹣1=2,
x1﹣1x+1=1+1,
(x﹣1)1=3,
x﹣1= ,
x=1,
x1=1,x1=1﹣,
(1)(x+1)1=4(x﹣1)1.
(x+1)1﹣4(x﹣1)1=2.
(x+1)1﹣[1(x﹣1)]1=2.
(x+1)1﹣(1x﹣1)1=2.
(x+1﹣1x+1)(x+1+1x﹣1)=2.
(﹣x+3)(3x﹣1)=2.
x1=3,x1=.
【点睛】
考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
2024年陕西师大附中中考数学四模试卷(含解析): 这是一份2024年陕西师大附中中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2024年陕西师大附中中考数学三模试卷(含解析): 这是一份2024年陕西师大附中中考数学三模试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省师大附中梅溪湖中学2021-2022学年中考数学最后一模试卷含解析: 这是一份湖南省师大附中梅溪湖中学2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了已知一组数据,计算结果是等内容,欢迎下载使用。