2022届湖州市吴兴区中考数学考前最后一卷含解析
展开这是一份2022届湖州市吴兴区中考数学考前最后一卷含解析,共21页。试卷主要包含了下列说法正确的是,不等式﹣x+1>3的解集是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
2.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为
A.x>1 B.﹣2<x<1
C.﹣2<x<0或x>1 D.x<﹣2
3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
4.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
5.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是( )
A.1 B.2 C.3 D.4
6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
7.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
8.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8 B.6 C.12 D.10
9.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
成绩(米)
人数
则这名运动员成绩的中位数、众数分别是( )
A. B. C., D.
10.不等式﹣x+1>3的解集是( )
A.x<﹣4 B.x>﹣4 C.x>4 D.x<4
二、填空题(共7小题,每小题3分,满分21分)
11.若关于x的分式方程的解为非负数,则a的取值范围是_____.
12.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.
13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.
14.同时掷两粒骰子,都是六点向上的概率是_____.
15.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
16.分式方程的解是 .
17.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.
三、解答题(共7小题,满分69分)
18.(10分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.
(1)求证:AE⊥EF;
(2)若圆的半径为5,BD=6 求AE的长度.
19.(5分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
20.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
(1)当时,求△PCQ的面积;
(2)设⊙O的面积为s,求s与t的函数关系式;
(3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.
21.(10分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
22.(10分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
23.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
24.(14分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
【详解】
解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
2、C
【解析】
根据反比例函数与一次函数在同一坐标系内的图象可直接解答.
【详解】
观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
由图象可得:-2<x<0或x>1,
故选C.
【点睛】
本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.
3、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
4、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
5、D
【解析】
如图连接OB、OD;
∵AB=CD,
∴=,故①正确
∵OM⊥AB,ON⊥CD,
∴AM=MB,CN=ND,
∴BM=DN,
∵OB=OD,
∴Rt△OMB≌Rt△OND,
∴OM=ON,故②正确,
∵OP=OP,
∴Rt△OPM≌Rt△OPN,
∴PM=PN,∠OPB=∠OPD,故④正确,
∵AM=CN,
∴PA=PC,故③正确,
故选D.
6、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
7、D
【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
8、C
【解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
【详解】
∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
∴PA=PB=6,AC=EC,BD=ED,
∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
即△PCD的周长为12,
故选:C.
【点睛】
本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
9、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
10、A
【解析】
根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.
【详解】
移项得:−x>3−1,
合并同类项得:−x>2,
系数化为1得:x<-4.
故选A.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.
二、填空题(共7小题,每小题3分,满分21分)
11、且
【解析】
分式方程去分母得:2(2x-a)=x-2,
去括号移项合并得:3x=2a-2,
解得:,
∵分式方程的解为非负数,
∴ 且 ,
解得:a≥1 且a≠4 .
12、
【解析】
首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
【详解】
如图,设与AD交于N,EF与AD交于M,
根据折叠的性质可得:,,,
四边形ABCD是矩形,
,,,
,
,
,
设,则,
在中,,
,
,
即,
,,,
≌,
,
,
,
,
,
由折叠的性质可得:,
,
,
,
,
故答案为.
【点睛】
本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
13、-6
【解析】
因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:
,解得
14、.
【解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
【详解】
解:都是六点向上的概率是.
【点睛】
本题考查了概率公式的应用.
15、1
【解析】
分别算三角函数,再化简即可.
【详解】
解:原式=-2×-×
=1.
【点睛】
本题考查掌握简单三角函数值,较基础.
16、x=﹣1.
【解析】
试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:去分母得:x=2x﹣1+2,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
考点:解分式方程.
17、1
【解析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
【详解】
∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,
∴MN=2,
∴AC=AN+NC=3,
∴BC=1,
故答案为1.
【点睛】
本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(共7小题,满分69分)
18、(1)详见解析;(2)AE=6.1.
【解析】
(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;
(2)利用相似三角形的判定和性质解答即可.
【详解】
(1)连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵OD=OA,
∴∠ODA=∠OAD,
∵点D是弧BC中点,
∴∠EAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥EA,
∴AE⊥EF;
(2)∵AB是直径,
∴∠ADB=90°,
∵圆的半径为5,BD=6
∴AB=10,BD=6,
在Rt△ADB中,,
∵∠EAD=∠DAB,∠AED=∠ADB=90°,
∴△AED∽△ADB,
∴,
即,
解得:AE=6.1.
【点睛】
本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.
19、13.1.
【解析】
试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.
试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.
由题意=,即=,CM=,
在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,
∴tan72°=,
∴AN≈12.3,
∵MN∥BC,AB∥CM,
∴四边形MNBC是平行四边形,
∴BN=CM=,
∴AB=AN+BN=13.1米.
考点:解直角三角形的应用.
20、(1);(2)①;②;(3)t的值为或1或.
【解析】
(1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
(2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
(3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
【详解】
(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
CP=t=,
∵∠ACB=90°,
∴S△PCQ=CQ•PC=×2×=;
(2)分两种情况:
①当Q在边AC上运动时,0<t≤2,如图1,
由题意得:CQ=4t,CP=t,
由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
∴S=π=;
②当Q在边AB上运动时,2<t<4如图2,
设⊙O与AB的另一个交点为D,连接PD,
∵CP=t,AC+AQ=4t,
∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
∵PQ为⊙O的直径,
∴∠PDQ=90°,
Rt△ACB中,AC=2cm,AB=4cm,
∴∠B=30°,
Rt△PDB中,PD=PB=,
∴BD=,
∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
∴PQ==,
∴S=π==;
(3)分三种情况:
①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
∴OE⊥AC,
∵AQ=4t﹣2,
Rt△AFQ中,∠AQF=30°,
∴AF=2t﹣1,
∴FQ=(2t﹣1),
∵FQ∥OE∥PC,OQ=OP,
∴EF=CE,
∴FQ+PC=2OE=PQ,
∴(2t﹣1)+t=,
解得:t=或﹣(舍);
②当⊙O与BC相切时,如图4,
此时PQ⊥BC,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=1;
③当⊙O与BA相切时,如图5,
此时PQ⊥BA,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=,
综上所述,t的值为或1或.
【点睛】
本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
21、1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式===;
当a=0时,原式=1.
考点:分式的化简求值.
22、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
23、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【解析】
根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
【详解】
(1).
(2) 根据题意,得:
∵
∴当时,随x的增大而增大
∵
∴当时,取得最大值,最大值是144
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
熟悉掌握图中所给信息以及列方程组是解决本题的关键.
24、小时
【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
【详解】
解:如图,过点C作CD⊥AB交AB延长线于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴CD=AC=40海里.
在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
∴BC=≈=50(海里),
∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).
考点:解直角三角形的应用-方向角问题
相关试卷
这是一份2022年湖南省中考数学考前最后一卷含解析,共22页。试卷主要包含了方程x2﹣3x+2=0的解是,计算的结果为等内容,欢迎下载使用。
这是一份2022届浙江省湖州市吴兴区达标名校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份2022届太原市中考数学考前最后一卷含解析,共17页。