年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析

    2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析第1页
    2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析第2页
    2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析

    展开

    这是一份2022届湖南省株洲市炎陵县中考数学全真模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,若分式有意义,则x的取值范围是,太原市出租车的收费标准是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列事件是确定事件的是(  )
    A.阴天一定会下雨
    B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
    C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
    D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
    2.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足(  )

    A.a= B.a=2b C.a=b D.a=3b
    3.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    4.若分式有意义,则x的取值范围是( )
    A.x>3 B.x<3 C.x≠3 D.x=3
    5.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(  )

    A.200米 B.200米 C.220米 D.100米
    6.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是(  )
    A. B. C. D.
    7.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是(  )
    A.11 B.8 C.7 D.5
    8.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
    A. B. C. D.
    9.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
    A. B. C. D.
    10.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为( )

    A. B. C. D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.

    12.计算:()•=__.
    13.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.
    14.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m __________ n.(填“>”,“=”或“
    【解析】
    由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知 ,利用锐角三角函数 ,即可判断出
    【详解】
    由题意可知:找到特殊点,如图所示:

    设点到射线的距离 ,点到射线的距离
    由图可知,
    ,
    ,


    【点睛】
    本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.
    15、+1
    【解析】
    根据对称性可知:GJ∥BH,GB∥JH,
    ∴四边形JHBG是平行四边形,
    ∴JH=BG,
    同理可证:四边形CDFB是平行四边形,
    ∴CD=FB,
    ∴FG+JH+CD=FG+BG+FB=2BF,
    设FG=x,
    ∵∠AFG=∠AFB,∠FAG=∠ABF=36°,
    ∴△AFG∽△BFA,
    ∴AF2=FG•BF,
    ∵AF=AG=BG=1,
    ∴x(x+1)=1,
    ∴x=(负根已经舍弃),
    ∴BF=+1=,
    ∴FG+JH+CD=+1.
    故答案为+1.
    16、1
    【解析】
    欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.
    【详解】
    设方程的另一根为x1,又∵x=1,
    ∴,
    解得m=1.
    故答案为1.
    【点睛】
    本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.

    三、解答题(共8题,共72分)
    17、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.
    【解析】
    (1)先利用待定系数法求一次函数解析式;
    (2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.
    【详解】
    (1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;
    (2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.
    ∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.
    答:售价定为130元时,每天获得的利润最大,最大利润是2元.
    【点睛】
    本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.
    18、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
    【解析】
    试题分析:(1)根据平均数和中位数的定义求解可得;
    (2)用洗衣服的水量除以第3天的用水总量即可得;
    (3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
    试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
    将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
    ∴用水量的中位数为800升;
    (2)×100%=12.5%.
    答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
    (3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
    19、见解析
    【解析】
    以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
    【详解】
    解:如图,点E即为所求作的点.

    【点睛】
    本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
    20、(1)见解析;(2);(1)DE的长分别为或1.
    【解析】
    (1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
    (2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
    (1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
    【详解】
    解:(1)∵AE是AM和AN的比例中项
    ∴,
    ∵∠A=∠A,
    ∴△AME∽△AEN,

    ∴∠AEM=∠ANE,
    ∵∠D=90°,
    ∴∠DCE+∠DEC=90°,
    ∵EM⊥BC,
    ∴∠AEM+∠DEC=90°,
    ∴∠AEM=∠DCE,
    ∴∠ANE=∠DCE;
    (2)∵AC与NE互相垂直,
    ∴∠EAC+∠AEN=90°,
    ∵∠BAC=90°,
    ∴∠ANE+∠AEN=90°,
    ∴∠ANE=∠EAC,
    由(1)得∠ANE=∠DCE,
    ∴∠DCE=∠EAC,
    ∴tan∠DCE=tan∠DAC,
    ∴,
    ∵DC=AB=6,AD=8,
    ∴DE=,
    ∴AE=8﹣=,
    由(1)得∠AEM=∠DCE,
    ∴tan∠AEM=tan∠DCE,
    ∴,
    ∴AM=,
    ∵,
    ∴AN=,
    ∴MN=;
    (1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
    又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
    ∴∠AEC=∠NME,
    当△AEC与以点E、M、N为顶点所组成的三角形相似时
    ①∠ENM=∠EAC,如图2,

    ∴∠ANE=∠EAC,
    由(2)得:DE=;
    ②∠ENM=∠ECA,
    如图1,

    过点E作EH⊥AC,垂足为点H,
    由(1)得∠ANE=∠DCE,
    ∴∠ECA=∠DCE,
    ∴HE=DE,
    又tan∠HAE=,
    设DE=1x,则HE=1x,AH=4x,AE=5x,
    又AE+DE=AD,
    ∴5x+1x=8,
    解得x=1,
    ∴DE=1x=1,
    综上所述,DE的长分别为或1.
    【点睛】
    本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
    21、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
    【解析】
    (1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
    (2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
    (3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
    【详解】
    (1)①当△AE B′为等边三角形时,∠AE B′=60°,
    由折叠可得,∠BEF=∠BE B′=×120°=60°,
    故答案为60;
    ②A B′∥EF,
    证明:∵点E是AB的中点,
    ∴AE=BE,
    由折叠可得BE=B′E,
    ∴AE=B′E,
    ∴∠EA B′=∠E B′A,
    又∵∠BEF=∠B′EF,
    ∴∠BEF=∠BA B′,
    ∴EF∥A B′;
    (2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
    ∴CF+ B′F=CF+BF=BC=10,
    ∵B′E+ B′C≥CE,
    ∴B′C≥CE﹣B′E=5﹣5,
    ∴B′C最小值为5﹣5,
    ∴△CB′F周长的最小值=10+5﹣5=5+5;
    (3)如图,连接A B′,易得∠A B′B=90°,
    将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
    由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
    由AB=10,B B′=6,可得A B′=8,
    ∴QM=QN=A B′=8,
    设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
    ∵∠BQP=90°,
    ∴22+(8﹣x)2=(6+x)2,
    解得:x=,
    ∴P B′=x=.



    【点睛】
    本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    22、建筑物AB的高度约为30.3m.
    【解析】
    分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.
    详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.
    过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.
    在Rt△ADE中,tan∠ADE=,
    ∴AE=DE•tan30°=.
    在Rt△DEB中,tan∠BDE=,
    ∴BE=DE•tan10°=2×0.18=7.2,
    ∴AB=AE+BE=23.09+7.2=30.29≈30.3.
    答:建筑物AB的高度约为30.3m.

    点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.
    23、y=+2x;(-1,-1).
    【解析】
    试题分析:首先将两点代入解析式列出关于b和c的二元一次方程组,然后求出b和c的值,然后将抛物线配方成顶点式,求出顶点坐标.
    试题解析:将点(0,0)和(1,3)代入解析式得:解得:
    ∴抛物线的解析式为y=+2x ∴y=+2x=-1 ∴顶点坐标为(-1,-1).
    考点:待定系数法求函数解析式.
    24、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.
    【解析】
    (1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;
    (2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.
    【详解】
    解:(1)设A型足球x个,则B型足球(100-x)个,
    ∴ 40x +60(100-x)=5200 ,
    解得:x=40 ,
    ∴100-x=100-40=60个,
    答:A型足球进了40个,B型足球进了60个.
    (2)设A型足球x个,则B型足球(100-x)个,
    100-x≥ ,
    解得:x≤60 ,
    设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,
    ∵k=-20,∴y随x的增大而减小,
    ∴当x=60时,y最小=4800元.
    【点睛】
    本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.

    相关试卷

    2023年湖南省株洲市中考模拟数学试题(含解析):

    这是一份2023年湖南省株洲市中考模拟数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省株洲市炎陵县中考一模数学试题(含答案):

    这是一份2023年湖南省株洲市炎陵县中考一模数学试题(含答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖南省株洲市炎陵县2022年中考猜题数学试卷含解析:

    这是一份湖南省株洲市炎陵县2022年中考猜题数学试卷含解析,共17页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map