2022届湖北省襄阳市第七中学中考数学对点突破模拟试卷含解析
展开
这是一份2022届湖北省襄阳市第七中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,两个反比例函数y1=,下列运算正确的是,计算等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
2.在函数y=中,自变量x的取值范围是( )
A.x≥0 B.x≤0 C.x=0 D.任意实数
3.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )
A. B.
C. D.
4.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
5.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为( )
A.:1 B.2: C.2:1 D.29:14
6.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
成绩(米)
人数
则这名运动员成绩的中位数、众数分别是( )
A. B. C., D.
7.下列运算正确的是( )
A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
8.计算(﹣ab2)3的结果是( )
A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
9.=( )
A.±4 B.4 C.±2 D.2
10.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为( )
A. B. C. D.
11.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
12.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是( )
A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.
15.计算:|﹣5|﹣=_____.
16.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.
17.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
20.(6分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
21.(6分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
22.(8分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.
求证:; 若,,, 求的长.
23.(8分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;
(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.
24.(10分)解方程:
25.(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
求证:四边形是菱形若,,求四边形的面积
26.(12分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
27.(12分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径;
(3)在(2)的条件下,若点B等分半圆CD,求DE的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
2、C
【解析】
当函数表达式是二次根式时,被开方数为非负数.据此可得.
【详解】
解:根据题意知 ,
解得:x=0,
故选:C.
【点睛】
本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
3、C
【解析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,
即可得出a、b之间的关系式.
【详解】
∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,
∴2014年我省财政收入为a(1+8.9%)亿元,
∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,
∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);
故选C.
【点睛】
此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.
4、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
【点睛】
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
5、A
【解析】
试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
故选A.
考点:反比例函数系数k的几何意义
6、D
【解析】
根据中位数、众数的定义即可解决问题.
【详解】
解:这些运动员成绩的中位数、众数分别是4.70,4.1.
故选:D.
【点睛】
本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
7、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
8、D
【解析】
根据积的乘方与幂的乘方计算可得.
【详解】
解:(﹣ab2)3=﹣a3b6,
故选D.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
法则.
9、B
【解析】
表示16的算术平方根,为正数,再根据二次根式的性质化简.
【详解】
解:,
故选B.
【点睛】
本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
10、D
【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
【详解】
由题意可得:,
故选D.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
11、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
12、C
【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
【详解】
解:∵抛物线和轴有交点,
,
解得:且.
故选.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
14、2:1.
【解析】
过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.
【详解】
如图,过点O作OE⊥AB于点E,延长EO交CD于点F,
∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,
∵AB//CD,∴△AOB∽△DOC,
又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,
∴=,
故答案为:2:1.
【点睛】
本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.
15、1
【解析】
分析:直接利用二次根式以及绝对值的性质分别化简得出答案.
详解:原式=5-3
=1.
故答案为1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
16、1﹣1
【解析】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.
【详解】
如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,
根据折叠的性质,△EBF≌△EB′F,
∴EB′⊥B′F,
∴EB′=EB,
∵E是AB边的中点,AB=4,
∴AE=EB′=1,
∵AD=6,
∴DE=,
∴B′D=1﹣1.
【点睛】
本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.
17、1
【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
【详解】
△=(﹣8)2﹣4m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
18、1
【解析】
解:3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=1.
故答案为1.
点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2元;(2)第二批花的售价至少为元;
【解析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
根据题意得:,
解得:,
经检验:是原方程的解,且符合题意.
答:第一批花每束的进价是2元.
(2)由可知第二批菊花的进价为元.
设第二批菊花的售价为m元,
根据题意得:,
解得:.
答:第二批花的售价至少为元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
20、135° m+n
【解析】
试题分析:
(1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
试题解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下图,过点E作EG⊥CB交CB的延长线于点G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,EG=,
∴GC=BG+BC=4,
∴CE=,
∵△EAC≌△BAD,
∴BD=EC=;
(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
∵BD=EC,
∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
即当∠ABC=135°时,BD最大=;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
21、(1)10米;(2)11.4米
【解析】
(1)延长DC交AN于H.只要证明BC=CD即可;
(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
【详解】
(1)如图,延长DC交AN于H,
∵∠DBH=60°,∠DHB=90°,
∴∠BDH=30°,
∵∠CBH=30°,
∴∠CBD=∠BDC=30°,
∴BC=CD=10(米);
(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
∴DH=15,
在Rt△ADH中,AH=≈=20,
∴AB=AH﹣BH=20﹣8.65=11.4(米).
【点睛】
本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
22、(1)详见解析;(2)
【解析】
(1)根据题意平分可得,从而证明即可解答
(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答
【详解】
(1)证明:平分
又
又
(2)
四边形是平行四边形
,
为等边三角形
过点作延长线于点.
在中,
【点睛】
此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线
23、 (1)见解析;(2)DF=
【解析】
(1)直接利用等腰三角形的定义结合勾股定理得出答案;
(2)利用直角三角的定义结合勾股定理得出符合题意的答案.
【详解】
(1)如图(1)所示:△ABE,即为所求;
(2)如图(2)所示:△CDF即为所求,DF=.
【点睛】
此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.
24、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
25、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
【点睛】
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
26、A、B两种型号的空调购买价分别为2120元、2320元
【解析】
试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
解得:
答:A、B两种型号的空调购买价分别为2120元、2320元
27、(1)证明见解析;(2);(3);
【解析】
(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
DH=x,则DE=2x,所以 然后求出x即可
得到DE的长.
【详解】
(1)证明:连接OA、AD,如图,
∵∠B=2∠P,∠B=∠ADC,
∴∠ADC=2∠P,
∵AP=AC,
∴∠P=∠ACP,
∴∠ADC=2∠ACP,
∵CD为直径,
∴∠DAC=90°,
∴∠ADC=60°,∠C=30°,
∴△ADO为等边三角形,
∴∠AOP=60°,
而∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥PA,
∴PA是⊙O的切线;
(2)解:在Rt△OAP中,∵∠P=30°,
∴OP=2OA,
∴
∴⊙O的直径为;
(3)解:作EH⊥AD于H,如图,
∵点B等分半圆CD,
∴∠BAC=45°,
∴∠DAE=45°,
设DH=x,
在Rt△DHE中,DE=2x,
在Rt△AHE中,
∴
即
解得
∴
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
相关试卷
这是一份湖北省襄阳市徐寨中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2022年湖北省十堰市中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是等内容,欢迎下载使用。
这是一份2022届天水市第七中学中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,一、单选题,下列各运算中,计算正确的是等内容,欢迎下载使用。