


2022届湖南省衡阳市部分中学中考数学适应性模拟试题含解析
展开
这是一份2022届湖南省衡阳市部分中学中考数学适应性模拟试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
A.8 B.9 C.5+ D.5+
2.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
3.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )
A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
C.红花、蓝花种植面积一定相等
D.蓝花、黄花种植面积一定相等
4.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
5.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是( )
A. B. C. D.
6.在以下四个图案中,是轴对称图形的是( )
A. B. C. D.
7.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
8.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )
A. B. C. D.
9.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )
A.0.1 B.0.2
C.0.3 D.0.4
10.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
二、填空题(共7小题,每小题3分,满分21分)
11.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
12.计算(﹣3)+(﹣9)的结果为______.
13.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.
14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).
15.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.
16.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.
17.把16a3﹣ab2因式分解_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
19.(5分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?
20.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)a= ,b= ,c= ;
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;
(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
21.(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
(1)求抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
22.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
23.(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
24.(14分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
【详解】
过点C作CM⊥AB,垂足为M,
在Rt△AMC中,
∵∠A=60°,AC=4,
∴AM=2,MC=2,
∴BM=AB-AM=3,
在Rt△BMC中,
BC===,
∵DE是线段AC的垂直平分线,
∴AD=DC,
∵∠A=60°,
∴△ADC等边三角形,
∴CD=AD=AC=4,
∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
故答案选C.
【点睛】
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
2、C
【解析】
试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;
∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;
当x=3时,,,即EF==,选项③正确;
当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.
考点:反比例函数与一次函数的交点问题.
3、C
【解析】
图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.
【详解】
解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.
故选择C.
【点睛】
本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.
4、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
5、A
【解析】
从正面看第一层是三个小正方形,第二层左边一个小正方形,
故选:A.
6、A
【解析】
根据轴对称图形的概念对各选项分析判断利用排除法求解.
【详解】
A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:A.
【点睛】
本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
8、B
【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:
【详解】
A、展开得到,不能和原图相对应,故本选项错误;
B、展开得到,能和原图相对,故本选项正确;
C、展开得到,不能和原图相对应,故本选项错误;
D、展开得到,不能和原图相对应,故本选项错误.
故选B.
9、B
【解析】
∵在5.5~6.5组别的频数是8,总数是40,
∴=0.1.
故选B.
10、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、甲
【解析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
【详解】
甲种水稻产量的方差是:
,
乙种水稻产量的方差是:
,
∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
12、-1
【解析】
试题分析:利用同号两数相加的法则计算即可得原式=﹣(3+9)=﹣1,
故答案为﹣1.
13、﹣4.
【解析】
作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
【详解】
解:作AN⊥x轴于N,如图所示:
∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
∴可设A(x,﹣x)(x<0),
在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
解得:x=﹣2,
∴A(﹣2,2),
代入y=得:k=﹣2×2=﹣4;
故答案为﹣4.
【点睛】
本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
14、.
【解析】
用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
【详解】
由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
故答案为:28%.
【点睛】
本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
15、3
【解析】
作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.
【详解】
解:作BE⊥AC于E,
在Rt△ABE中,sin∠BAC=,
∴BE=AB•sin∠BAC=,
由题意得,∠C=45°,
∴BC==(千米),
故答案为3.
【点睛】
本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.
16、1
【解析】
由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.
【详解】
解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,
∵AB∥CD,
∴∠1+∠3=180°,
∴∠1=180°﹣70°=1°,
故答案为1.
17、a(4a+b)(4a﹣b)
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:16a3-ab2
=a(16a2-b2)
=a(4a+b)(4a-b).
故答案为:a(4a+b)(4a-b).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题(共7小题,满分69分)
18、(3)证明见试题解析;(3)3.
【解析】
试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.
(3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.
试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;
(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC﹣AG=30﹣7=3,即CG的长是3.
考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.
19、自行车的速度是12km/h,公共汽车的速度是1km/h.
【解析】
设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解分式方程即可.
【详解】
解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,
根据题意得:,
解得:x=12,
经检验,x=12是原分式方程的解,
∴3x=1.
答:自行车的速度是12km/h,公共汽车的速度是1km/h.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20、(1)2、45、20;(2)72;(3)
【解析】
分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;
(2)用360°乘以C等次百分比可得;
(3)画出树状图,由概率公式即可得出答案.
详解:(1)本次调查的总人数为12÷30%=40人,
∴a=40×5%=2,b=×100=45,c=×100=20,
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
(3)画树状图,如图所示:
共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
故P(选中的两名同学恰好是甲、乙)=.
点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.
21、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
【解析】
(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
【详解】
解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
∴抛物线与x轴的交点B的坐标为(1,0),
设抛物线解析式为y=a(x+3)(x﹣1),
将点C(0,﹣3)代入,得:﹣3a=﹣3,
解得a=1,
则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
∵S△POC=2S△BOC,
∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
当a=2时,点P的坐标为(2,21);
当a=﹣2时,点P的坐标为(﹣2,5).
∴点P的坐标为(2,21)或(﹣2,5).
(3)如图所示:
设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
∴直线AC的解析式为y=﹣x﹣3.
设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
∴当x=﹣时,QD有最大值,QD的最大值为.
【点睛】
本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
22、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
23、(1)见解析;(2)1;(3)估计全校达标的学生有10人
【解析】
(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.
(2)将成绩一般和优秀的人数相加即可;
(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.
【详解】
解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,
测试的学生总数=24÷20%=120人,
成绩优秀的人数=120×50%=60人,
所补充图形如下所示:
(2)该校被抽取的学生中达标的人数=36+60=1.
(3)1200×(50%+30%)=10(人).
答:估计全校达标的学生有10人.
24、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
相关试卷
这是一份2023年湖南省衡阳市蒸湘区育贤中学中考数学模拟试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市部分校2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了下列实数中是无理数的是,化简等内容,欢迎下载使用。
这是一份衡阳市逸夫中学2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,-5的倒数是等内容,欢迎下载使用。