2022届吉林省前郭县联考中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A., B., C., D.,
2.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
3.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于( )
A.90° B.120° C.60° D.30°
4.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为
A. B. C.2 D.1
5.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
6.若代数式有意义,则实数x的取值范围是( )
A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
7.计算的正确结果是( )
A. B.- C.1 D.﹣1
8.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
9.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了( )
A.0.9米 B.1.3米 C.1.5米 D.2米
10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()
A. B.8 C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.
12.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.
13.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.
14.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是 .
15.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.
16.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)
17.若代数式在实数范围内有意义,则x的取值范围是_______.
三、解答题(共7小题,满分69分)
18.(10分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)
19.(5分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
20.(8分)(1)解不等式组:;
(2)解方程:.
21.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h)
与A地的距离
0.5
1.8
_____
甲与A地的距离(km)
5
20
乙与A地的距离(km)
0
12
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
22.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.
(1)求山西省的丘陵面积与平原面积;
(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?
23.(12分)化简:.
24.(14分)解不等式 ,并把它的解集表示在数轴上.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
故选C.
考点:抛物线与x轴的交点.
2、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
3、C
【解析】
解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.
点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
4、A
【解析】
连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
【详解】
连接OM、OD、OF,
∵正六边形ABCDEF内接于⊙O,M为EF的中点,
∴OM⊥OD,OM⊥EF,∠MFO=60°,
∴∠MOD=∠OMF=90°,
∴OM=OF•sin∠MFO=2×=,
∴MD=,
故选A.
【点睛】
本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
5、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
6、D
【解析】
试题分析:∵代数式有意义,
∴,
解得x≥0且x≠1.
故选D.
考点:二次根式,分式有意义的条件.
7、D
【解析】
根据有理数加法的运算方法,求出算式的正确结果是多少即可.
【详解】
原式
故选:D.
【点睛】
此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
1相加,仍得这个数.
8、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
9、B
【解析】
试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.
解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,
∴AC=2,
∵BD=0.9,
∴CD=2.1.
在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,
∴EC=0.7,
∴AE=AC﹣EC=2﹣0.7=1.2.
故选B.
考点:勾股定理的应用.
10、D
【解析】
∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
设⊙O的半径为r,则OC=r-2,
在Rt△AOC中,∵AC=1,OC=r-2,
∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
∴AE=2r=3.
连接BE,
∵AE是⊙O的直径,∴∠ABE=90°.
在Rt△ABE中,∵AE=3,AB=8,∴.
在Rt△BCE中,∵BE=6,BC=1,∴.故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、130
【解析】
分析:n边形的内角和是 因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.
详解:设多边形的边数为x,由题意有
解得
因而多边形的边数是18,
则这一内角为
故答案为
点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
12、.
【解析】
先求出BE的值,作DM⊥AB,DN⊥BC延长线,先证明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF==.
【详解】
∵∠ABC=∠ADC,
∴A,B,C,D四点共圆,
∴AC为直径,
∵E为AC的中点,
∴E为此圆圆心,
∵F为弦BD中点,
∴EF⊥BD,
连接BE,∴BE=AC===;
作DM⊥AB,DN⊥BC延长线,∠BAD=∠BCN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AM=CN,DM=DN,
∵∠DMB=∠DNC=∠ABC=90°,
∴四边形BNDM为矩形,
又∵DM=DN,
∴矩形BNDM为正方形,
∴BM=BN,
设AM=CN=x,BM=AB-AM=12-x=BN=5+x,
∴12-x=5+x,x=,BN=,
∵BD为正方形BNDM的对角线,
∴BD=BN=,BF=BD=,
∴EF===.
故答案为.
【点睛】
本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.
13、1
【解析】
连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.
【详解】
连接AD,
∵PQ∥AB,
∴∠ADQ=∠DAB,
∵点D在∠BAC的平分线上,
∴∠DAQ=∠DAB,
∴∠ADQ=∠DAQ,
∴AQ=DQ,
在Rt△ABC中,∵AB=5,BC=3,
∴AC=4,
∵PQ∥AB,
∴△CPQ∽△CBA,
∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,
在Rt△CPQ中,PQ=5x,
∵PD=PC=3x,
∴DQ=1x,
∵AQ=4-4x,
∴4-4x=1x,解得x=,
∴CP=3x=1;
故答案为:1.
【点睛】
本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
14、6或12或1.
【解析】
根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
∵整数k<5,∴k=4.
∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
∴△ABC的边长为2、2、2或4、4、4或4、4、2.
∴△ABC的周长为6或12或1.
考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
【详解】
请在此输入详解!
15、6
【解析】
点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
【详解】
解:点P在以O为圆心OA为半径的圆上,
∴P是两个圆的交点,
当⊙O与⊙M外切时,AB最小,
∵⊙M的半径为2,圆心M(3,4),
∴PM=5,
∴OA=3,
∴AB=6,
故答案为6;
【点睛】
本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.
16、40
【解析】
利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.
【详解】
解:由题意可得:∠BDA=45°,
则AB=AD=120m,
又∵∠CAD=30°,
∴在Rt△ADC中,
tan∠CDA=tan30°=,
解得:CD=40(m),
故答案为40.
【点睛】
此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.
17、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
三、解答题(共7小题,满分69分)
18、此时轮船所在的B处与灯塔P的距离是98海里.
【解析】
【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45° ,AP=80(海里),
在Rt△APC中,cos∠APC=,
∴PC=PA•cos∠APC=40(海里),
在Rt△PCB中,cos∠BPC=,
∴PB==40≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
19、(1)120,30%;(2)作图见解析;(3)1.
【解析】
试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
试题解析:(1) 12÷15%=120人;36÷120=30%;
(2)120×45%=54人,补全统计图如下:
(3)1800×=1人.
考点:条形统计图;扇形统计图;用样本估计总体.
20、(1)﹣2≤x<2;(2)x=.
【解析】
(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
【详解】
(1),
∵解不等式①得:x<2,
解不等式②得:x≥﹣2,
∴不等式组的解集为﹣2≤x<2;
(2)方程两边都乘以(2x﹣1)(x﹣2)得
2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
解得:x=,
检验:把x=代入(2x﹣1)(x﹣2)≠0,
所以x=是原方程的解,
即原方程的解是x=.
【点睛】
本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
21、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
【解析】
(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
(Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
【详解】
(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
此时乙行驶的时间是2﹣1.5=0. 5(时),
所以乙离开A的距离是40×0.5=20(km),
故填写下表:
(Ⅱ)由题意知:
y1=10x(0≤x≤1.5),
y2=;
(Ⅲ)根据题意,得,
当0≤x≤1.5时,由10x=12,得x=1.2,
当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
因此,当y=12时,x的值是1.2或1.6.
【点睛】
本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.
22、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.
【解析】
(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;
(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.
【详解】
解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.
由题意:x+2x+0.8+5.59=15.66,
解得x=3.09,
2x+0.8=6.98,
答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.
(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.
由题意:y甲=30×0.9m=27m,
y乙=30×0.8(m+2)=24m+48,
当y甲=y乙时,27m=24m+48,m=16,
当y甲>y乙时,27m>24m+48,m>16,
当y甲<y乙时,27m<24m+48,m<16,
答:当学生人数为16人时,两个旅行社的费用一样.
当学生人数为大于16人时,乙旅行社比较合算.
当学生人数为小于16人时,甲旅行社比较合算.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.
23、
【解析】
原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.
【详解】
解:原式.
24、x<5;数轴见解析
【解析】
【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
【详解】移项,得 ,
去分母,得 ,
移项,得,
∴不等式的解集为,
在数轴上表示如图所示:
【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
云南省双柏县联考2022年中考试题猜想数学试卷含解析: 这是一份云南省双柏县联考2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了我们知道等内容,欢迎下载使用。
吉林省松原市前郭县达标名校2022年中考联考数学试题含解析: 这是一份吉林省松原市前郭县达标名校2022年中考联考数学试题含解析,共24页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2022年吉林省前郭尔罗斯蒙古族自治县重点中学中考联考数学试题含解析: 这是一份2022年吉林省前郭尔罗斯蒙古族自治县重点中学中考联考数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列说法中,错误的是等内容,欢迎下载使用。