2022届吉林省农安县新农中学中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm
21.5
22.0
22.5
23.0
23.5
人数
2
4
3
8
3
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
2.下列计算正确的是( )
A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab3
3.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A. B.
C. D.
4.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足( )
A.a= B.a=2b C.a=b D.a=3b
5.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A. B. C. D.
6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
7.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )
A.60° B.65° C.70° D.75°
9.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
A.6个 B.7个 C.8个 D.9个
10.的算术平方根是( )
A.4 B.±4 C.2 D.±2
二、填空题(共7小题,每小题3分,满分21分)
11.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
12.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.
13.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
14.计算:的值是______________.
15.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.
16.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .
17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)
19.(5分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.
求一次函数的解析式和反比例函数的解析式;
求的面积;
根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
20.(8分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|
21.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
22.(10分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
23.(12分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?
24.(14分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
2、A
【解析】
分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.
详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.
点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.
3、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
4、B
【解析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
5、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
6、B
【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
根据作图过程可知:PB=CP,
∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
∵∠ABC=90°,∴PD∥AB.
∴E为AC的中点,∴EC=EA,∵EB=EC.
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
∴正确的有①②④.
故选B.
考点:线段垂直平分线的性质.
7、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
8、C
【解析】
试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
考点:切线的性质、三角形外角的性质、圆的基本性质.
9、A
【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【详解】
如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的C点有2个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点睛】
本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
10、C
【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.
【详解】
=4,
4的算术平方根是2,
所以的算术平方根是2,
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
【详解】
设大和尚x人,小和尚y人,由题意可得
.
故答案为.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
12、113407, 北京市近两年的专利授权量平均每年增加6458.5件.
【解析】
依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.
【详解】
解:∵北京市近两年的专利授权量平均每年增加:(件),
∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),
故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.
【点睛】
此题考查统计图的意义,解题的关键在于看懂图中数据.
13、3或1.
【解析】
解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
综上所述:∴m的值为3或1.
故答案为3或1.
14、-1
【解析】
解:=-1.故答案为:-1.
15、1.
【解析】
解:∵平移后解析式是y=x﹣b,
代入y=得:x﹣b=,
即x2﹣bx=5,
y=x﹣b与x轴交点B的坐标是(b,0),
设A的坐标是(x,y),
∴OA2﹣OB2
=x2+y2﹣b2
=x2+(x﹣b)2﹣b2
=2x2﹣2xb
=2(x2﹣xb)
=2×5=1,
故答案为1.
点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
16、
【解析】
试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.
考点:概率的计算.
17、.
【解析】
待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.
【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:
∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.
设正方形的边长为b,则b2=9,解得b=3.
∵正方形的中心在原点O,∴直线AB的解析式为:x=2.
∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).
∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.
∴此反比例函数的解析式为:.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)9﹣3π
【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
19、(1),;(2)8;(3)或.
【解析】
试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;
(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;
(3)根据函数的图象和交点坐标即可求解.
试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.
∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).
∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.
故直线AB的解析式为.
∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;
(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;
(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
20、4
【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
【详解】
(﹣2)0+()﹣1+4cos30°﹣|4﹣|
=1+3+4×﹣(4﹣2)
=4+2﹣4+2
=4.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
21、(1)见解析;(2)
【解析】
分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
22、见解析
【解析】
在DABC和DEAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE证得DABC≌DEAD,继而证得AC=DE.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
∴∠DAE=∠AEB.
∵AB=AE,
∴∠AEB=∠B.
∴∠B=∠DAE.
∵在△ABC和△AED中,
,
∴△ABC≌△EAD(SAS),
∴AC=DE.
【点睛】
本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
23、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
【解析】
试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
试题解析:(1)∵OB=3OA=1,
∴B对应的数是1.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-2,点N对应的数为2x.
①点M、点N在点O两侧,则
2-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-2=2x,
解得x=2.
所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
24、(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;
(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.
【详解】
(1)如图,连接OD,
∵CD是⊙O的切线,
∴OD⊥CD,
∴∠2+∠3=∠1+∠COD=90°,
∵DE=EC,
∴∠1=∠2,
∴∠3=∠COD,
∴DE=OE;
(2)∵OD=OE,
∴OD=DE=OE,
∴∠3=∠COD=∠DEO=60°,
∴∠2=∠1=30°,
∵AB∥CD,
∴∠4=∠1,
∴∠1=∠2=∠4=∠OBA=30°,
∴∠BOC=∠DOC=60°,
在△CDO与△CBO中,,
∴△CDO≌△CBO(SAS),
∴∠CBO=∠CDO=90°,
∴OB⊥BC,
∴BC是⊙O的切线;
(3)∵OA=OB=OE,OE=DE=EC,
∴OA=OB=DE=EC,
∵AB∥CD,
∴∠4=∠1,
∴∠1=∠2=∠4=∠OBA=30°,
∴△ABO≌△CDE(AAS),
∴AB=CD,
∴四边形ABCD是平行四边形,
∴∠DAE=∠DOE=30°,
∴∠1=∠DAE,
∴CD=AD,
∴▱ABCD是菱形.
【点睛】
此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.
吉林省农安县新阳中学2022年中考数学最后冲刺模拟试卷含解析: 这是一份吉林省农安县新阳中学2022年中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了已知抛物线y=x2-2mx-4等内容,欢迎下载使用。
吉林省农安县新农中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份吉林省农安县新农中学2022年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了函数y=中自变量x的取值范围是,下列说法中正确的是等内容,欢迎下载使用。
2022年上海新云台中学中考猜题数学试卷含解析: 这是一份2022年上海新云台中学中考猜题数学试卷含解析,共24页。试卷主要包含了已知,则的值是,如图,将△ABC绕点C,用一根长为a等内容,欢迎下载使用。