年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省海门市东洲国际中考数学全真模拟试题含解析

    2022届江苏省海门市东洲国际中考数学全真模拟试题含解析第1页
    2022届江苏省海门市东洲国际中考数学全真模拟试题含解析第2页
    2022届江苏省海门市东洲国际中考数学全真模拟试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省海门市东洲国际中考数学全真模拟试题含解析

    展开

    这是一份2022届江苏省海门市东洲国际中考数学全真模拟试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,已知点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    2.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    成绩






    人数






    这些运动员跳高成绩的中位数是(  )
    A. B. C. D.
    3.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    4.如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( )

    (A)33 (B)34 (C)35 (D)36
    5.若关于x的不等式组只有5个整数解,则a的取值范围( )
    A. B. C. D.
    6.如图是由5个相同的正方体搭成的几何体,其左视图是( )

    A. B.
    C. D.
    7.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是( )
    A. B.
    C. D.
    8.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是(  )
    A. cm B.2 cm C.2cm D. cm
    9.如图,不等式组的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是(   )
    A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
    11.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为(  )

    A.38° B.39° C.42° D.48°
    12.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).

    所剪次数
    1
    2
    3
    4

    n
    正三角形个数
    4
    7
    10
    13

    an

    14.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.

    15.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标
    价为___________元.
    16.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.

    17.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
    18.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
    (1)甲、乙两种套房每套提升费用各多少万元?
    (2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
    20.(6分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    21.(6分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
    求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
    22.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
    23.(8分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
    判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
    24.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    25.(10分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
    (1)画出△A1B1C1
    (2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
    (3)在(2)的条件下求BC扫过的面积.

    26.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
    27.(12分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:

    根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    2、C
    【解析】
    根据中位数的定义解答即可.
    【详解】
    解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
    所以这些运动员跳高成绩的中位数是1.1.
    故选:C.
    【点睛】
    本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    3、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    4、D
    【解析】
    试题分析:过点E作EM⊥OA,垂足为M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;
    故选D.

    考点:反比例函数综合题.
    5、A
    【解析】
    分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
    【详解】

    解①得x<20
    解②得x>3-2a,
    ∵不等式组只有5个整数解,
    ∴不等式组的解集为3-2a<x<20,
    ∴14≤3-2a<15,

    故选:A
    【点睛】
    本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
    6、A
    【解析】
    根据三视图的定义即可判断.
    【详解】
    根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
    【点睛】
    本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
    7、C
    【解析】
    先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.
    【详解】
    小进跑800米用的时间为秒,小俊跑800米用的时间为秒,
    ∵小进比小俊少用了40秒,
    方程是,
    故选C.
    【点睛】
    本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.
    8、B
    【解析】
    由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
    【详解】
    解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
    故选择B.
    【点睛】
    本题考查了圆锥的概念和弧长的计算.
    9、B
    【解析】
    首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
    【详解】
    解:解第一个不等式得:x>-1;
    解第二个不等式得:x≤1,
    在数轴上表示,
    故选B.
    【点睛】
    此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;

    相关试卷

    2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析):

    这是一份2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省海门市东洲国际数学九上期末达标检测模拟试题含答案:

    这是一份2023-2024学年江苏省海门市东洲国际数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了根据下面表格中的对应值等内容,欢迎下载使用。

    2023-2024学年江苏省海门市东洲国际九年级数学第一学期期末经典模拟试题含答案:

    这是一份2023-2024学年江苏省海门市东洲国际九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了如图,四边形的顶点坐标分别为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map