搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析

    2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析第1页
    2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析第2页
    2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析

    展开

    这是一份2022届江苏省连云港市赣榆区市级名校中考二模数学试题含解析,共19页。试卷主要包含了计算的正确结果是,下列各式属于最简二次根式的有等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是(  )
    A.(a2)4=a6 B.a2•a3=a6 C. D.
    2.在0,-2,5,,-0.3中,负数的个数是( ).
    A.1 B.2 C.3 D.4
    3.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= (  )

    A.70° B.110° C.130° D.140°
    4.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )

    A.4 B. C.12 D.
    5.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    6.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是(  )
    A.5 B.4 C.3 D.2
    7.计算的正确结果是(  )
    A. B.- C.1 D.﹣1
    8.下列各式属于最简二次根式的有( )
    A. B. C. D.
    9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为(  )
    A.4 B.3 C.2 D.1
    10.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
    A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)

    12.分解因式:a2-2ab+b2-1=______.
    13.如图,为的直径,与相切于点,弦.若,则______.

    14.不等式≥-1的正整数解为________________.
    15.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.

    16.如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 .

    三、解答题(共8题,共72分)
    17.(8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
    18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)

    19.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
    20.(8分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    21.(8分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

    22.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.

    23.(12分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE

    24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
    如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
    【详解】
    A、原式=a8,所以A选项错误;
    B、原式=a5,所以B选项错误;
    C、原式= ,所以C选项正确;
    D、与不能合并,所以D选项错误.
    故选:C.
    【点睛】
    本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
    2、B
    【解析】
    根据负数的定义判断即可
    【详解】
    解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
    故选B.
    3、D
    【解析】
    ∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
    =360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
    4、D
    【解析】
    分析:
    由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
    详解:
    由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
    ∵△ABC是等边三角形,点D是BC边上的中点,
    ∴∠ABC=60°,AD⊥BC,
    ∵DP⊥AB于点P,此时DP=,
    ∴BD=,
    ∴BC=2BD=4,
    ∴AB=4,
    ∴AD=AB·sin∠B=4×sin60°=,
    ∴S△ABC=AD·BC=.
    故选D.

    点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
    5、A
    【解析】
    由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
    故选A.
    点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
    6、D
    【解析】
    由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
    【详解】
    不等式组整理得:,
    由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
    即-2<a≤4,即a=-1,0,1,2,3,4,
    分式方程去分母得:5-y+3y-3=a,即y=,
    由分式方程有整数解,得到a=0,2,共2个,
    故选:D.
    【点睛】
    本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    7、D
    【解析】
    根据有理数加法的运算方法,求出算式的正确结果是多少即可.
    【详解】
    原式
    故选:D.
    【点睛】
    此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
    ①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
    数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
    1相加,仍得这个数.
    8、B
    【解析】
    先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
    【详解】
    A选项:,故不是最简二次根式,故A选项错误;
    B选项:是最简二次根式,故B选项正确;
    C选项:,故不是最简二次根式,故本选项错误;
    D选项:,故不是最简二次根式,故D选项错误;
    故选:B.
    【点睛】
    考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
    9、A
    【解析】
    分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
    详解:根据题意,得:=2x
    解得:x=3,
    则这组数据为6、7、3、9、5,其平均数是6,
    所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
    故选A.
    点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    10、A
    【解析】
    ∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
    当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
    解得b≥.
    当抛物线与x轴的交点的横坐标均大于等于0时,
    设抛物线与x轴的交点的横坐标分别为x1,x2,
    则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
    ∴此种情况不存在.
    ∴b≥.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、>
    【解析】
    根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.
    【详解】
    解:根据题意得:m<1<n,且|m|>|n|,
    ∴m+n<1,m−n<1,
    ∴(m+n)(m−n)>1.
    故答案为>.
    【点睛】
    本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.
    12、 (a-b+1)(a-b-1)
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
    【详解】
    a2-2ab+b2-1,
    =(a-b)2-1,
    =(a-b+1)(a-b-1).
    【点睛】
    本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.
    13、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    14、1, 2, 1.
    【解析】
    去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.
    【详解】

    ∴1-x≥-2,
    ∴-x≥-1,
    ∴x≤1,
    ∴不等式的正整数解是1,2,1,
    故答案为:1,2,1.
    【点睛】
    本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.
    15、220.
    【解析】
    试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°
    考点:内角和定理
    点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键
    16、8π
    【解析】
    圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.
    【详解】
    侧面积=4×4π÷2=8π.
    故答案为8π.
    【点睛】
    本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.

    三、解答题(共8题,共72分)
    17、甲、乙两公司人均捐款分别为80元、100元.
    【解析】
    试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
    试题解析:
    设甲公司人均捐款x元

    解得:
    经检验,为原方程的根, 80+20=100
    答:甲、乙两公司人均各捐款为80元、100元.
    18、B、C两地的距离大约是6千米.
    【解析】
    过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.
    【详解】
    解:过B作于点D.
    在中,千米,
    中,,
    千米,
    千米.
    答:B、C两地的距离大约是6千米.

    【点睛】
    此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
    19、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
    20、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    21、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
    22、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,

    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    23、证明见解析.
    【解析】
    易证△DAC≌△CEF,即可得证.
    【详解】
    证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
    ∴∠DCA=∠CFE,在△DAC和△CEF中:,
    ∴△DAC≌△CEF(AAS),
    ∴AD=CE,AC=EF,
    ∴AE=AD+EF
    【点睛】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
    24、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
    【解析】
    (1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
    (2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
    ②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
    (3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
    【详解】
    (1)解:∵直线l与以BC为直径的圆O相切于点C.
    ∴∠BCE=90°,
    又∵BC为直径,
    ∴∠BFC=∠CFE=90°,
    ∵∠FEC=∠CEB,
    ∴△CEF∽△BEC,
    ∴,
    ∵BE=15,CE=9,
    即:,
    解得:EF= ;
    (2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
    ∴∠ABF=∠FCD,
    同理:∠AFB=∠CFD,
    ∴△CDF∽△BAF;
    ②∵△CDF∽△BAF,
    ∴,
    又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
    ∴△CEF∽△BCF,
    ∴,
    ∴,
    又∵AB=BC,
    ∴CE=CD;
    (3)解:∵CE=CD,
    ∴BC=CD=CE,
    在Rt△BCE中,tan∠CBE=,
    ∴∠CBE=30°,
    故 为60°,
    ∴F在直径BC下方的圆弧上,且.

    【点睛】
    考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.

    相关试卷

    2024年江苏省连云港市赣榆初级中学中考数学二模试卷(含解析):

    这是一份2024年江苏省连云港市赣榆初级中学中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省连云港市赣榆区中考数学二模试卷(含解析):

    这是一份2023年江苏省连云港市赣榆区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年江苏省连云港市赣榆区中考数学一模试卷(含解析):

    这是一份2023年江苏省连云港市赣榆区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map